Properties

Label 324.a
Conductor 324324
Sato-Tate group E3E_3
End(JQ)R\End(J_{\overline{\Q}}) \otimes \R M2(R)\mathrm{M}_2(\R)
End(JQ)Q\End(J_{\overline{\Q}}) \otimes \Q M2(Q)\mathrm{M}_2(\Q)
End(J)Q\End(J) \otimes \Q CM\mathsf{CM}
Q\overline{\Q}-simple no
GL2\mathrm{GL}_2-type yes

Related objects

Learn more

Genus 2 curves in isogeny class 324.a

Label Equation
324.a.648.1 y2+(x3+x+1)y=x5+2x4+2x3+x2y^2 + (x^3 + x + 1)y = x^5 + 2x^4 + 2x^3 + x^2

L-function data

Analytic rank:00
Mordell-Weil rank:00
 
Bad L-factors:
Prime L-Factor
221+T+T2 1 + T + T^{2}
331+3T+3T2 1 + 3 T + 3 T^{2}
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
55 15T2+25T4 1 - 5 T^{2} + 25 T^{4} 2.5.a_af
77 1+2T3T2+14T3+49T4 1 + 2 T - 3 T^{2} + 14 T^{3} + 49 T^{4} 2.7.c_ad
1111 13T2T233T3+121T4 1 - 3 T - 2 T^{2} - 33 T^{3} + 121 T^{4} 2.11.ad_ac
1313 (15T+13T2)(1+7T+13T2) ( 1 - 5 T + 13 T^{2} )( 1 + 7 T + 13 T^{2} ) 2.13.c_aj
1717 (1+3T+17T2)2 ( 1 + 3 T + 17 T^{2} )^{2} 2.17.g_br
1919 (1+T+19T2)2 ( 1 + T + 19 T^{2} )^{2} 2.19.c_bn
2323 16T+13T2138T3+529T4 1 - 6 T + 13 T^{2} - 138 T^{3} + 529 T^{4} 2.23.ag_n
2929 1+6T+7T2+174T3+841T4 1 + 6 T + 7 T^{2} + 174 T^{3} + 841 T^{4} 2.29.g_h
\cdots\cdots\cdots
 
See L-function page for more information

Sato-Tate group

ST=\mathrm{ST} = E3E_3, ST0=SU(2)\quad \mathrm{ST}^0 = \mathrm{SU}(2)

Decomposition of the Jacobian

Splits over the number field Q(b)\Q (b) \simeq Q(ζ9)+\Q(\zeta_{9})^+ with defining polynomial:
  x33x1x^{3} - 3 x - 1

Decomposes up to isogeny as the square of the elliptic curve isogeny class:
  Elliptic curve isogeny class 3.3.81.1-8.1-a

Endomorphisms of the Jacobian

Of GL2\GL_2-type over Q\Q

Endomorphism algebra over Q\Q:

End(J)Q\End (J_{}) \otimes \Q \simeqQ(3)\Q(\sqrt{-3})
End(J)R\End (J_{}) \otimes \R\simeq C\C

Smallest field over which all endomorphisms are defined:
Galois number field K=Q(a)K = \Q (a) \simeq Q(ζ9)+\Q(\zeta_{9})^+ with defining polynomial x33x1x^{3} - 3 x - 1

Endomorphism algebra over Q\overline{\Q}:

End(JQ)Q\End (J_{\overline{\Q}}) \otimes \Q \simeqM2(\mathrm{M}_2(Q\Q))
End(JQ)R\End (J_{\overline{\Q}}) \otimes \R\simeq M2(R)\mathrm{M}_2 (\R)

More complete information on endomorphism algebras and rings can be found on the pages of the individual curves in the isogeny class.