Properties

Label 40000.e
Conductor 4000040000
Sato-Tate group J(C4)J(C_4)
End(JQ)R\End(J_{\overline{\Q}}) \otimes \R M2(C)\mathrm{M}_2(\C)
End(JQ)Q\End(J_{\overline{\Q}}) \otimes \Q M2(CM)\mathrm{M}_2(\mathsf{CM})
End(J)Q\End(J) \otimes \Q CM\mathsf{CM}
Q\overline{\Q}-simple no
GL2\mathrm{GL}_2-type yes

Related objects

Learn more

Genus 2 curves in isogeny class 40000.e

Label Equation
40000.e.200000.1 y2+x3y=x55x310x28x2y^2 + x^3y = x^5 - 5x^3 - 10x^2 - 8x - 2

L-function data

Analytic rank:22  (upper bound)
Mordell-Weil rank:22
 
Bad L-factors:
Prime L-Factor
221+2T+2T2 1 + 2 T + 2 T^{2}
551 1
 
Good L-factors:
Prime L-Factor
331+4T+8T2+12T3+9T4 1 + 4 T + 8 T^{2} + 12 T^{3} + 9 T^{4}
771+49T4 1 + 49 T^{4}
1111(1+6T+11T2)2 ( 1 + 6 T + 11 T^{2} )^{2}
13131+169T4 1 + 169 T^{4}
17171+8T+32T2+136T3+289T4 1 + 8 T + 32 T^{2} + 136 T^{3} + 289 T^{4}
1919134T2+361T4 1 - 34 T^{2} + 361 T^{4}
23231+529T4 1 + 529 T^{4}
2929(1+29T2)2 ( 1 + 29 T^{2} )^{2}
\cdots\cdots
 
See L-function page for more information

Sato-Tate group

ST=\mathrm{ST} = J(C4)J(C_4), ST0=U(1)\quad \mathrm{ST}^0 = \mathrm{U}(1)

Decomposition of the Jacobian

Splits over the number field Q(b)\Q (b) \simeq 4.4.8000.1 with defining polynomial:
  x410x2+20x^{4} - 10 x^{2} + 20

Decomposes up to isogeny as the square of the elliptic curve isogeny class:
  Elliptic curve isogeny class 4.4.8000.1-25.1-b

Endomorphisms of the Jacobian

Of GL2\GL_2-type over Q\Q

Endomorphism algebra over Q\Q:

End(J)Q\End (J_{}) \otimes \Q \simeqQ(1)\Q(\sqrt{-1})
End(J)R\End (J_{}) \otimes \R\simeq C\C

Smallest field over which all endomorphisms are defined:
Galois number field K=Q(a)K = \Q (a) \simeq 8.0.64000000.1 with defining polynomial x82x6+4x48x2+16x^{8} - 2 x^{6} + 4 x^{4} - 8 x^{2} + 16

Endomorphism algebra over Q\overline{\Q}:

End(JQ)Q\End (J_{\overline{\Q}}) \otimes \Q \simeqM2(\mathrm{M}_2(Q(2)\Q(\sqrt{-2}) ))
End(JQ)R\End (J_{\overline{\Q}}) \otimes \R\simeq M2(C)\mathrm{M}_2 (\C)

More complete information on endomorphism algebras and rings can be found on the pages of the individual curves in the isogeny class.