Genus 2 curves in isogeny class 40000.e
Label | Equation |
---|---|
40000.e.200000.1 | \(y^2 + x^3y = x^5 - 5x^3 - 10x^2 - 8x - 2\) |
L-function data
Analytic rank: | \(2\) (upper bound) | ||||||||||||||||||||
Mordell-Weil rank: | \(2\) | ||||||||||||||||||||
Bad L-factors: |
| ||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||
See L-function page for more information |
Sato-Tate group
\(\mathrm{ST} =\) $J(C_4)$, \(\quad \mathrm{ST}^0 = \mathrm{U}(1)\)
Decomposition of the Jacobian
Splits over the number field \(\Q (b) \simeq \) 4.4.8000.1 with defining polynomial:
\(x^{4} - 10 x^{2} + 20\)
Decomposes up to isogeny as the square of the elliptic curve isogeny class:
Elliptic curve isogeny class 4.4.8000.1-25.1-b
Endomorphisms of the Jacobian
Of \(\GL_2\)-type over \(\Q\)
Endomorphism algebra over \(\Q\):
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{-1}) \) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\C\) |
Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) 8.0.64000000.1 with defining polynomial \(x^{8} - 2 x^{6} + 4 x^{4} - 8 x^{2} + 16\)
Endomorphism algebra over \(\overline{\Q}\):
\(\End (J_{\overline{\Q}}) \otimes \Q \) | \(\simeq\) | \(\mathrm{M}_2(\)\(\Q(\sqrt{-2}) \)\()\) |
\(\End (J_{\overline{\Q}}) \otimes \R\) | \(\simeq\) | \(\mathrm{M}_2 (\C)\) |
More complete information on endomorphism algebras and rings can be found on the pages of the individual curves in the isogeny class.