Properties

Label 6400.i
Conductor 64006400
Sato-Tate group E1E_1
End(JQ)R\End(J_{\overline{\Q}}) \otimes \R M2(R)\mathrm{M}_2(\R)
End(JQ)Q\End(J_{\overline{\Q}}) \otimes \Q M2(Q)\mathrm{M}_2(\Q)
End(J)Q\End(J) \otimes \Q M2(Q)\mathrm{M}_2(\Q)
Q\overline{\Q}-simple no
GL2\mathrm{GL}_2-type no

Related objects

Learn more

Genus 2 curves in isogeny class 6400.i

Label Equation
6400.i.409600.1 y2=x64x44x21y^2 = -x^6 - 4x^4 - 4x^2 - 1

L-function data

Analytic rank:00
Mordell-Weil rank:00
 
Bad L-factors:
Prime L-Factor
221 1
55(1+T)2 ( 1 + T )^{2}
 
Good L-factors:
Prime L-Factor
33(12T+3T2)2 ( 1 - 2 T + 3 T^{2} )^{2}
77(1+2T+7T2)2 ( 1 + 2 T + 7 T^{2} )^{2}
1111(1+11T2)2 ( 1 + 11 T^{2} )^{2}
1313(12T+13T2)2 ( 1 - 2 T + 13 T^{2} )^{2}
1717(1+6T+17T2)2 ( 1 + 6 T + 17 T^{2} )^{2}
1919(14T+19T2)2 ( 1 - 4 T + 19 T^{2} )^{2}
2323(1+6T+23T2)2 ( 1 + 6 T + 23 T^{2} )^{2}
2929(16T+29T2)2 ( 1 - 6 T + 29 T^{2} )^{2}
\cdots\cdots
 
See L-function page for more information

Sato-Tate group

ST=\mathrm{ST} = E1E_1, ST0=SU(2)\quad \mathrm{ST}^0 = \mathrm{SU}(2)

Decomposition of the Jacobian

Splits over Q\Q

Decomposes up to isogeny as the square of the elliptic curve isogeny class:
  Elliptic curve isogeny class 80.b

Endomorphisms of the Jacobian

Not of GL2\GL_2-type over Q\Q

Endomorphism algebra over Q\Q:

End(J)Q\End (J_{}) \otimes \Q \simeqM2(\mathrm{M}_2(Q\Q))
End(J)R\End (J_{}) \otimes \R\simeq M2(R)\mathrm{M}_2 (\R)

All Q\overline{\Q}-endomorphisms of the Jacobian are defined over Q\Q.

More complete information on endomorphism algebras and rings can be found on the pages of the individual curves in the isogeny class.