Genus 2 curves in isogeny class 72900.a
Label | Equation |
---|---|
72900.a.291600.1 | \(y^2 + y = x^6 - 2x^3 + 1\) |
L-function data
Analytic rank: | \(1\) | ||||||||||||||||||
Mordell-Weil rank: | \(1\) | ||||||||||||||||||
Bad L-factors: |
| ||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||
See L-function page for more information |
Sato-Tate group
\(\mathrm{ST} =\) $J(E_6)$, \(\quad \mathrm{ST}^0 = \mathrm{SU}(2)\)
Decomposition of the Jacobian
Splits over the number field \(\Q (b) \simeq \) 6.2.450000.1 with defining polynomial:
\(x^{6} - x^{5} - 5 x^{3} - x + 1\)
Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
\(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
\(g_4 = 192 b^{5} - 690 b^{4} + 690 b^{3} - 750 b^{2} + 2280 b - 672\)
\(g_6 = -20160 b^{5} + 10080 b^{4} + 20160 b^{3} + 80640 b^{2} + 40320 b - 39060\)
Conductor norm: 4782969
\(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
\(g_4 = -192 b^{5} - 210 b^{4} + 210 b^{3} + 1650 b^{2} + 1320 b + 672\)
\(g_6 = 20160 b^{5} - 10080 b^{4} - 20160 b^{3} - 80640 b^{2} - 40320 b - 28980\)
Conductor norm: 4782969
Endomorphisms of the Jacobian
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism algebra over \(\Q\):
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) |
Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a)\) with defining polynomial \(x^{12} - x^{11} + x^{10} + 10 x^{9} - 5 x^{8} - x^{7} + 26 x^{6} - x^{5} - 5 x^{4} + 10 x^{3} + x^{2} - x + 1\)
Endomorphism algebra over \(\overline{\Q}\):
\(\End (J_{\overline{\Q}}) \otimes \Q \) | \(\simeq\) | \(\mathrm{M}_2(\)\(\Q\)\()\) |
\(\End (J_{\overline{\Q}}) \otimes \R\) | \(\simeq\) | \(\mathrm{M}_2 (\R)\) |
More complete information on endomorphism algebras and rings can be found on the pages of the individual curves in the isogeny class.