Properties

Label 75625.b
Conductor 7562575625
Sato-Tate group SU(2)×SU(2)\mathrm{SU}(2)\times\mathrm{SU}(2)
End(JQ)R\End(J_{\overline{\Q}}) \otimes \R R×R\R \times \R
End(JQ)Q\End(J_{\overline{\Q}}) \otimes \Q RM\mathsf{RM}
End(J)Q\End(J) \otimes \Q RM\mathsf{RM}
Q\overline{\Q}-simple yes
GL2\mathrm{GL}_2-type yes

Related objects

Learn more

Genus 2 curves in isogeny class 75625.b

Label Equation
75625.b.75625.1 y2+(x3+x+1)y=x5x46x3+11x7y^2 + (x^3 + x + 1)y = x^5 - x^4 - 6x^3 + 11x - 7

L-function data

Analytic rank:22  (upper bound)
Mordell-Weil rank:22
 
Bad L-factors:
Prime L-Factor
551 1
1111(1+T)2 ( 1 + T )^{2}
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
22 1+T+T2+2T3+4T4 1 + T + T^{2} + 2 T^{3} + 4 T^{4} 2.2.b_b
33 1+T+3T2+3T3+9T4 1 + T + 3 T^{2} + 3 T^{3} + 9 T^{4} 2.3.b_d
77 1+5T+17T2+35T3+49T4 1 + 5 T + 17 T^{2} + 35 T^{3} + 49 T^{4} 2.7.f_r
1313 (1+5T+13T2)2 ( 1 + 5 T + 13 T^{2} )^{2} 2.13.k_bz
1717 1+3T+7T2+51T3+289T4 1 + 3 T + 7 T^{2} + 51 T^{3} + 289 T^{4} 2.17.d_h
1919 (1+T+19T2)2 ( 1 + T + 19 T^{2} )^{2} 2.19.c_bn
2323 111T+73T2253T3+529T4 1 - 11 T + 73 T^{2} - 253 T^{3} + 529 T^{4} 2.23.al_cv
2929 1+9T+49T2+261T3+841T4 1 + 9 T + 49 T^{2} + 261 T^{3} + 841 T^{4} 2.29.j_bx
\cdots\cdots\cdots
 
See L-function page for more information

Sato-Tate group

ST=\mathrm{ST} = SU(2)×SU(2)\mathrm{SU}(2)\times\mathrm{SU}(2), ST0=SU(2)×SU(2)\quad \mathrm{ST}^0 = \mathrm{SU}(2)\times\mathrm{SU}(2)

Decomposition of the Jacobian

Simple over Q\overline{\Q}

Endomorphisms of the Jacobian

Of GL2\GL_2-type over Q\Q

Endomorphism algebra over Q\Q:

End(J)Q\End (J_{}) \otimes \Q \simeqQ(13)\Q(\sqrt{13})
End(J)R\End (J_{}) \otimes \R\simeq R×R\R \times \R

All Q\overline{\Q}-endomorphisms of the Jacobian are defined over Q\Q.

More complete information on endomorphism algebras and rings can be found on the pages of the individual curves in the isogeny class.