⌂
→
Genus 2 curves
→
Q
\Q
Q
→
7680
→
b
→
46080
Citation
·
Feedback
·
Hide Menu
Genus 2 curves in isogeny class 7680.b of discriminant 46080
Introduction
Overview
Random
Universe
Knowledge
L-functions
Rational
All
Modular forms
Classical
Maass
Hilbert
Bianchi
Varieties
Elliptic curves over
Q
\Q
Q
Elliptic curves over
Q
(
α
)
\Q(\alpha)
Q
(
α
)
Genus 2 curves over
Q
\Q
Q
Higher genus families
Abelian varieties over
F
q
\F_{q}
F
q
Fields
Number fields
p
p
p
-adic fields
Representations
Dirichlet characters
Artin representations
Groups
Galois groups
Sato-Tate groups
Database
↑
Learn more
Source and acknowledgments
Completeness of the data
Reliability of the data
Genus 2 curve labels
Refine search
Conductor
Absolute discriminant
Rational points*
Weierstrass points
Torsion order
Bad
p
p
p
include
exclude
exactly
subset
2-Selmer rank
Analytic rank*
Analytic Ш*
Torsion
Q
\Q
Q
-end algebra
S
T
(
X
)
\mathrm{ST}(X)
S
T
(
X
)
A
u
t
(
X
)
\mathrm{Aut}(X)
A
u
t
(
X
)
Square Ш*
Q
‾
\overline{\Q}
Q
-simple
Q
RM
CM
Q x Q
M_2(Q)
J(C_2)
J(C_4)
J(C_6)
J(D_2)
J(D_3)
J(D_4)
J(D_6)
J(T)
J(O)
C_{2,1}
C_{6,1}
D_{2,1}
D_{3,2}
D_{4,1}
D_{4,2}
D_{6,1}
D_{6,2}
O_1
E_1
E_2
E_3
E_4
E_6
J(E_1)
J(E_2)
J(E_3)
J(E_4)
J(E_6)
F_{a,b}
F_{ac}
N(U(1)xSU(2))
SU(2)xSU(2)
N(SU(2)xSU(2))
USp(4)
C2
C4
V4
C6
D4
D6
yes
no
yes
no
Q
‾
\overline{\Q}
Q
-end algebra
S
T
0
(
X
)
\mathrm{ST}^0(X)
S
T
0
(
X
)
A
u
t
(
X
Q
‾
)
\mathrm{Aut}(X_{\overline{\Q}})
A
u
t
(
X
Q
)
Locally solvable
GL
2
\GL_2
GL
2
-type
Q
RM
CM
QM
Q x Q
CM x Q
CM x CM
M_2(Q)
M_2(CM)
U(1)
SU(2)
U(1) x U(1)
U(1) x SU(2)
SU(2) x SU(2)
USp(4)
C2
V4
D4
C10
D6
C3:D4
GL(2,3)
yes
no
yes
no
Galois image
Nonmax
ℓ
\ \ell
ℓ
include
exclude
exactly
subset
Sort order
Select
Search again
Random curve
▲ conductor
absolute discriminant
rational points
Weierstrass points
torsion order
analytic sha
2-Selmer rank
analytic rank
Sato-Tate group
columns to display
✓ label
✓ class
✓ conductor
✓ discriminant
✓ rank*
2-selmer rank
✓ torsion
✓ Qbar-end algebra
Q-end algebra
GL2-type
Sato-Tate group
nonmaximal primes
Q-simple
Qbar-simple
Q-automorphisms
Qbar-automorphisms
Q-points*
Q-Weierstrass points
mod-ℓ images
locally solvable
square ш*
analytic ш*
Tamagawa product
regulator
real period
leading coefficient
Igusa-Clebsch invariants
Igusa invariants
G2-invariants
✓ equation
show all
Results (unique match)
Download
displayed columns
for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
Label
Class
Conductor
Discriminant
Rank*
2-Selmer rank
Torsion
End
0
(
J
Q
‾
)
\textrm{End}^0(J_{\overline\Q})
End
0
(
J
Q
)
End
0
(
J
)
\textrm{End}^0(J)
End
0
(
J
)
GL
2
-type
\GL_2\textsf{-type}
GL
2
-type
Sato-Tate
Nonmaximal primes
Q
\Q
Q
-simple
Q
‾
\overline{\Q}
Q
-simple
Aut
(
X
)
\Aut(X)
A
u
t
(
X
)
Aut
(
X
Q
‾
)
\Aut(X_{\overline{\Q}})
A
u
t
(
X
Q
)
Q
\Q
Q
-points
Q
\Q
Q
-Weierstrass points
mod-
ℓ
\ell
ℓ
images
Locally solvable
Square Ш*
Analytic Ш*
Tamagawa
Regulator
Real period
Leading coefficient
Igusa-Clebsch invariants
Igusa invariants
G2-invariants
Equation
7680.b.46080.1
7680.b
2
9
⋅
3
⋅
5
2^{9} \cdot 3 \cdot 5
2
9
⋅
3
⋅
5
2
10
⋅
3
2
⋅
5
2^{10} \cdot 3^{2} \cdot 5
2
1
0
⋅
3
2
⋅
5
0
0
0
3
3
3
Z
/
2
Z
⊕
Z
/
2
Z
⊕
Z
/
2
Z
\Z/2\Z\oplus\Z/2\Z\oplus\Z/2\Z
Z
/
2
Z
⊕
Z
/
2
Z
⊕
Z
/
2
Z
Q
\Q
Q
Q
\Q
Q
U
S
p
(
4
)
\mathrm{USp}(4)
U
S
p
(
4
)
2
2
2
✓
✓
C
2
C_2
C
2
C
2
C_2
C
2
4
4
4
4
4
4
2.360.2
✓
✓
1
1
1
2
2
2^{2}
2
2
1.000000
1.000000
1
.
0
0
0
0
0
0
17.497219
17.497219
1
7
.
4
9
7
2
1
9
1.093576
1.093576
1
.
0
9
3
5
7
6
[
200
,
472
,
32580
,
180
]
[200,472,32580,180]
[
2
0
0
,
4
7
2
,
3
2
5
8
0
,
1
8
0
]
[
400
,
5408
,
56320
,
−
1679616
,
46080
]
[400,5408,56320,-1679616,46080]
[
4
0
0
,
5
4
0
8
,
5
6
3
2
0
,
−
1
6
7
9
6
1
6
,
4
6
0
8
0
]
[
2000000000
/
9
,
67600000
/
9
,
1760000
/
9
]
[2000000000/9,67600000/9,1760000/9]
[
2
0
0
0
0
0
0
0
0
0
/
9
,
6
7
6
0
0
0
0
0
/
9
,
1
7
6
0
0
0
0
/
9
]
y
2
=
x
5
+
3
x
4
−
5
x
2
−
x
+
2
y^2 = x^5 + 3x^4 - 5x^2 - x + 2
y
2
=
x
5
+
3
x
4
−
5
x
2
−
x
+
2
Download
displayed columns
for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV