Properties

Label 847.b
Conductor $847$
Sato-Tate group $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R \times \R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q \times \Q\)
\(\End(J) \otimes \Q\) \(\Q \times \Q\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Learn more

Genus 2 curves in isogeny class 847.b

Label Equation
847.b.9317.1 \(y^2 + (x^2 + 1)y = x^5 + 2x^4 - 3x^3 + 2x^2 - x\)

L-function data

Analytic rank:\(0\)
Mordell-Weil rank:\(0\)
 
Bad L-factors:
Prime L-Factor
\(7\)\( ( 1 + T )( 1 + 2 T + 7 T^{2} )\)
\(11\)\( ( 1 - T )^{2}\)
 
Good L-factors:
Prime L-Factor
\(2\)\( ( 1 - T + 2 T^{2} )( 1 + 2 T + 2 T^{2} )\)
\(3\)\( ( 1 - 2 T + 3 T^{2} )( 1 + T + 3 T^{2} )\)
\(5\)\( ( 1 - T + 5 T^{2} )( 1 + 2 T + 5 T^{2} )\)
\(13\)\( ( 1 - 4 T + 13 T^{2} )^{2}\)
\(17\)\( ( 1 - 4 T + 17 T^{2} )( 1 + 2 T + 17 T^{2} )\)
\(19\)\( ( 1 + 19 T^{2} )^{2}\)
\(23\)\( ( 1 + T + 23 T^{2} )( 1 + 4 T + 23 T^{2} )\)
\(29\)\( ( 1 + 29 T^{2} )( 1 + 6 T + 29 T^{2} )\)
$\cdots$$\cdots$
 
See L-function page for more information

Sato-Tate group

\(\mathrm{ST} =\) $\mathrm{SU}(2)\times\mathrm{SU}(2)$, \(\quad \mathrm{ST}^0 = \mathrm{SU}(2)\times\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over \(\Q\)

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  Elliptic curve isogeny class 77.c
  Elliptic curve isogeny class 11.a

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism algebra over \(\Q\):

\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R \times \R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

More complete information on endomorphism algebras and rings can be found on the pages of the individual curves in the isogeny class.