L(s) = 1 | + (−0.918 − 0.396i)2-s + (0.686 + 0.727i)4-s + (0.448 − 0.893i)5-s + (0.727 + 0.686i)7-s + (−0.342 − 0.939i)8-s + (−0.766 + 0.642i)10-s + (0.549 − 0.835i)11-s + (−0.396 − 0.918i)14-s + (−0.0581 + 0.998i)16-s + (−0.939 − 0.342i)17-s + (0.984 + 0.173i)19-s + (0.957 − 0.286i)20-s + (−0.835 + 0.549i)22-s + (−0.686 − 0.727i)23-s + (−0.597 − 0.802i)25-s + ⋯ |
L(s) = 1 | + (−0.918 − 0.396i)2-s + (0.686 + 0.727i)4-s + (0.448 − 0.893i)5-s + (0.727 + 0.686i)7-s + (−0.342 − 0.939i)8-s + (−0.766 + 0.642i)10-s + (0.549 − 0.835i)11-s + (−0.396 − 0.918i)14-s + (−0.0581 + 0.998i)16-s + (−0.939 − 0.342i)17-s + (0.984 + 0.173i)19-s + (0.957 − 0.286i)20-s + (−0.835 + 0.549i)22-s + (−0.686 − 0.727i)23-s + (−0.597 − 0.802i)25-s + ⋯ |
Λ(s)=(=(1053s/2ΓR(s)L(s)(−0.286−0.957i)Λ(1−s)
Λ(s)=(=(1053s/2ΓR(s)L(s)(−0.286−0.957i)Λ(1−s)
Degree: |
1 |
Conductor: |
1053
= 34⋅13
|
Sign: |
−0.286−0.957i
|
Analytic conductor: |
4.89011 |
Root analytic conductor: |
4.89011 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1053(284,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 1053, (0: ), −0.286−0.957i)
|
Particular Values
L(21) |
≈ |
0.6239664141−0.8382822701i |
L(21) |
≈ |
0.6239664141−0.8382822701i |
L(1) |
≈ |
0.7618109872−0.3283255330i |
L(1) |
≈ |
0.7618109872−0.3283255330i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 13 | 1 |
good | 2 | 1+(−0.918−0.396i)T |
| 5 | 1+(0.448−0.893i)T |
| 7 | 1+(0.727+0.686i)T |
| 11 | 1+(0.549−0.835i)T |
| 17 | 1+(−0.939−0.342i)T |
| 19 | 1+(0.984+0.173i)T |
| 23 | 1+(−0.686−0.727i)T |
| 29 | 1+(−0.597−0.802i)T |
| 31 | 1+(0.727−0.686i)T |
| 37 | 1+(−0.342+0.939i)T |
| 41 | 1+(−0.802−0.597i)T |
| 43 | 1+(0.0581−0.998i)T |
| 47 | 1+(−0.727−0.686i)T |
| 53 | 1+(0.5+0.866i)T |
| 59 | 1+(−0.549−0.835i)T |
| 61 | 1+(−0.286−0.957i)T |
| 67 | 1+(0.116−0.993i)T |
| 71 | 1+(0.984−0.173i)T |
| 73 | 1+(0.342+0.939i)T |
| 79 | 1+(−0.993+0.116i)T |
| 83 | 1+(0.116+0.993i)T |
| 89 | 1+(0.984+0.173i)T |
| 97 | 1+(0.549−0.835i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−21.69665651835446347387634424131, −20.80604314768702578430644477927, −19.90288280715810497839927143233, −19.54466632860136232013465791504, −18.26512878494594047599526603591, −17.804681180140853259167791249322, −17.42714852739715152662400769556, −16.40729160726008484265910372014, −15.491396210216531653668620341678, −14.702882652211938854362812574490, −14.202229389708272879688805379103, −13.31168440487850851346728113243, −11.83352752091673919723222004453, −11.22085339973899109656761402635, −10.421948005311409546217630446820, −9.779746409666491190121723147319, −8.95711566077261632674215680180, −7.8487945876242960107727115025, −7.17027075460633836842164340856, −6.59324339914786788582509099102, −5.55863748229217542481595860397, −4.52495414012034377673891007531, −3.24859276679031577800369996083, −1.99713375720893115285263521078, −1.37531472911322107179882175201,
0.60507871063697973787762256277, 1.70405921205225265351717396658, 2.417052232540971202464893196689, 3.68714203912146678283894367224, 4.78171300950069128183234865711, 5.80051989128182472540491088467, 6.635332872412110557995661900864, 7.96508212882840883918427499596, 8.47008183244211043255381150980, 9.189421985631393910327068620394, 9.86379017664597302715644708628, 10.973190312623471189843628415885, 11.787157638940271370501172693988, 12.177571313558574339067152320240, 13.37231025993185692397641941041, 14.01198008469043188644056571597, 15.367829047807922248007343612196, 15.92181879936879732131579202775, 16.97302209694439889515991545721, 17.25671868670348710904153931563, 18.37757028816112359513820739688, 18.68442831703071420580101996686, 19.918526689992005318157029798951, 20.39893287414427874924059031720, 21.110530774104284448237473697603