Properties

Label 1-1053-1053.284-r0-0-0
Degree 11
Conductor 10531053
Sign 0.2860.957i-0.286 - 0.957i
Analytic cond. 4.890114.89011
Root an. cond. 4.890114.89011
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.918 − 0.396i)2-s + (0.686 + 0.727i)4-s + (0.448 − 0.893i)5-s + (0.727 + 0.686i)7-s + (−0.342 − 0.939i)8-s + (−0.766 + 0.642i)10-s + (0.549 − 0.835i)11-s + (−0.396 − 0.918i)14-s + (−0.0581 + 0.998i)16-s + (−0.939 − 0.342i)17-s + (0.984 + 0.173i)19-s + (0.957 − 0.286i)20-s + (−0.835 + 0.549i)22-s + (−0.686 − 0.727i)23-s + (−0.597 − 0.802i)25-s + ⋯
L(s)  = 1  + (−0.918 − 0.396i)2-s + (0.686 + 0.727i)4-s + (0.448 − 0.893i)5-s + (0.727 + 0.686i)7-s + (−0.342 − 0.939i)8-s + (−0.766 + 0.642i)10-s + (0.549 − 0.835i)11-s + (−0.396 − 0.918i)14-s + (−0.0581 + 0.998i)16-s + (−0.939 − 0.342i)17-s + (0.984 + 0.173i)19-s + (0.957 − 0.286i)20-s + (−0.835 + 0.549i)22-s + (−0.686 − 0.727i)23-s + (−0.597 − 0.802i)25-s + ⋯

Functional equation

Λ(s)=(1053s/2ΓR(s)L(s)=((0.2860.957i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1053 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.286 - 0.957i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(1053s/2ΓR(s)L(s)=((0.2860.957i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1053 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.286 - 0.957i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 10531053    =    34133^{4} \cdot 13
Sign: 0.2860.957i-0.286 - 0.957i
Analytic conductor: 4.890114.89011
Root analytic conductor: 4.890114.89011
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ1053(284,)\chi_{1053} (284, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 1053, (0: ), 0.2860.957i)(1,\ 1053,\ (0:\ ),\ -0.286 - 0.957i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.62396641410.8382822701i0.6239664141 - 0.8382822701i
L(12)L(\frac12) \approx 0.62396641410.8382822701i0.6239664141 - 0.8382822701i
L(1)L(1) \approx 0.76181098720.3283255330i0.7618109872 - 0.3283255330i
L(1)L(1) \approx 0.76181098720.3283255330i0.7618109872 - 0.3283255330i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
13 1 1
good2 1+(0.9180.396i)T 1 + (-0.918 - 0.396i)T
5 1+(0.4480.893i)T 1 + (0.448 - 0.893i)T
7 1+(0.727+0.686i)T 1 + (0.727 + 0.686i)T
11 1+(0.5490.835i)T 1 + (0.549 - 0.835i)T
17 1+(0.9390.342i)T 1 + (-0.939 - 0.342i)T
19 1+(0.984+0.173i)T 1 + (0.984 + 0.173i)T
23 1+(0.6860.727i)T 1 + (-0.686 - 0.727i)T
29 1+(0.5970.802i)T 1 + (-0.597 - 0.802i)T
31 1+(0.7270.686i)T 1 + (0.727 - 0.686i)T
37 1+(0.342+0.939i)T 1 + (-0.342 + 0.939i)T
41 1+(0.8020.597i)T 1 + (-0.802 - 0.597i)T
43 1+(0.05810.998i)T 1 + (0.0581 - 0.998i)T
47 1+(0.7270.686i)T 1 + (-0.727 - 0.686i)T
53 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
59 1+(0.5490.835i)T 1 + (-0.549 - 0.835i)T
61 1+(0.2860.957i)T 1 + (-0.286 - 0.957i)T
67 1+(0.1160.993i)T 1 + (0.116 - 0.993i)T
71 1+(0.9840.173i)T 1 + (0.984 - 0.173i)T
73 1+(0.342+0.939i)T 1 + (0.342 + 0.939i)T
79 1+(0.993+0.116i)T 1 + (-0.993 + 0.116i)T
83 1+(0.116+0.993i)T 1 + (0.116 + 0.993i)T
89 1+(0.984+0.173i)T 1 + (0.984 + 0.173i)T
97 1+(0.5490.835i)T 1 + (0.549 - 0.835i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−21.69665651835446347387634424131, −20.80604314768702578430644477927, −19.90288280715810497839927143233, −19.54466632860136232013465791504, −18.26512878494594047599526603591, −17.804681180140853259167791249322, −17.42714852739715152662400769556, −16.40729160726008484265910372014, −15.491396210216531653668620341678, −14.702882652211938854362812574490, −14.202229389708272879688805379103, −13.31168440487850851346728113243, −11.83352752091673919723222004453, −11.22085339973899109656761402635, −10.421948005311409546217630446820, −9.779746409666491190121723147319, −8.95711566077261632674215680180, −7.8487945876242960107727115025, −7.17027075460633836842164340856, −6.59324339914786788582509099102, −5.55863748229217542481595860397, −4.52495414012034377673891007531, −3.24859276679031577800369996083, −1.99713375720893115285263521078, −1.37531472911322107179882175201, 0.60507871063697973787762256277, 1.70405921205225265351717396658, 2.417052232540971202464893196689, 3.68714203912146678283894367224, 4.78171300950069128183234865711, 5.80051989128182472540491088467, 6.635332872412110557995661900864, 7.96508212882840883918427499596, 8.47008183244211043255381150980, 9.189421985631393910327068620394, 9.86379017664597302715644708628, 10.973190312623471189843628415885, 11.787157638940271370501172693988, 12.177571313558574339067152320240, 13.37231025993185692397641941041, 14.01198008469043188644056571597, 15.367829047807922248007343612196, 15.92181879936879732131579202775, 16.97302209694439889515991545721, 17.25671868670348710904153931563, 18.37757028816112359513820739688, 18.68442831703071420580101996686, 19.918526689992005318157029798951, 20.39893287414427874924059031720, 21.110530774104284448237473697603

Graph of the ZZ-function along the critical line