from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1053, base_ring=CyclotomicField(108))
M = H._module
chi = DirichletCharacter(H, M([106,63]))
pari: [g,chi] = znchar(Mod(284,1053))
χ1053(20,⋅)
χ1053(41,⋅)
χ1053(50,⋅)
χ1053(110,⋅)
χ1053(137,⋅)
χ1053(158,⋅)
χ1053(167,⋅)
χ1053(227,⋅)
χ1053(254,⋅)
χ1053(275,⋅)
χ1053(284,⋅)
χ1053(344,⋅)
χ1053(371,⋅)
χ1053(392,⋅)
χ1053(401,⋅)
χ1053(461,⋅)
χ1053(488,⋅)
χ1053(509,⋅)
χ1053(518,⋅)
χ1053(578,⋅)
χ1053(605,⋅)
χ1053(626,⋅)
χ1053(635,⋅)
χ1053(695,⋅)
χ1053(722,⋅)
χ1053(743,⋅)
χ1053(752,⋅)
χ1053(812,⋅)
χ1053(839,⋅)
χ1053(860,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(326,730) → (e(5453),e(127))
a |
−1 | 1 | 2 | 4 | 5 | 7 | 8 | 10 | 11 | 14 | 16 | 17 |
χ1053(284,a) |
1 | 1 | e(10861) | e(547) | e(10889) | e(10813) | e(3625) | e(187) | e(10891) | e(5437) | e(277) | e(95) |