sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1053, base_ring=CyclotomicField(108))
M = H._module
chi = DirichletCharacter(H, M([38,99]))
pari:[g,chi] = znchar(Mod(137,1053))
Modulus: | 1053 | |
Conductor: | 1053 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 108 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ1053(20,⋅)
χ1053(41,⋅)
χ1053(50,⋅)
χ1053(110,⋅)
χ1053(137,⋅)
χ1053(158,⋅)
χ1053(167,⋅)
χ1053(227,⋅)
χ1053(254,⋅)
χ1053(275,⋅)
χ1053(284,⋅)
χ1053(344,⋅)
χ1053(371,⋅)
χ1053(392,⋅)
χ1053(401,⋅)
χ1053(461,⋅)
χ1053(488,⋅)
χ1053(509,⋅)
χ1053(518,⋅)
χ1053(578,⋅)
χ1053(605,⋅)
χ1053(626,⋅)
χ1053(635,⋅)
χ1053(695,⋅)
χ1053(722,⋅)
χ1053(743,⋅)
χ1053(752,⋅)
χ1053(812,⋅)
χ1053(839,⋅)
χ1053(860,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(326,730) → (e(5419),e(1211))
a |
−1 | 1 | 2 | 4 | 5 | 7 | 8 | 10 | 11 | 14 | 16 | 17 |
χ1053(137,a) |
1 | 1 | e(10829) | e(5429) | e(10837) | e(10877) | e(3629) | e(1811) | e(108107) | e(5453) | e(272) | e(94) |
sage:chi.jacobi_sum(n)