Properties

Label 1053.137
Modulus $1053$
Conductor $1053$
Order $108$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1053, base_ring=CyclotomicField(108))
 
M = H._module
 
chi = DirichletCharacter(H, M([38,99]))
 
pari: [g,chi] = znchar(Mod(137,1053))
 

Basic properties

Modulus: \(1053\)
Conductor: \(1053\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(108\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1053.cm

\(\chi_{1053}(20,\cdot)\) \(\chi_{1053}(41,\cdot)\) \(\chi_{1053}(50,\cdot)\) \(\chi_{1053}(110,\cdot)\) \(\chi_{1053}(137,\cdot)\) \(\chi_{1053}(158,\cdot)\) \(\chi_{1053}(167,\cdot)\) \(\chi_{1053}(227,\cdot)\) \(\chi_{1053}(254,\cdot)\) \(\chi_{1053}(275,\cdot)\) \(\chi_{1053}(284,\cdot)\) \(\chi_{1053}(344,\cdot)\) \(\chi_{1053}(371,\cdot)\) \(\chi_{1053}(392,\cdot)\) \(\chi_{1053}(401,\cdot)\) \(\chi_{1053}(461,\cdot)\) \(\chi_{1053}(488,\cdot)\) \(\chi_{1053}(509,\cdot)\) \(\chi_{1053}(518,\cdot)\) \(\chi_{1053}(578,\cdot)\) \(\chi_{1053}(605,\cdot)\) \(\chi_{1053}(626,\cdot)\) \(\chi_{1053}(635,\cdot)\) \(\chi_{1053}(695,\cdot)\) \(\chi_{1053}(722,\cdot)\) \(\chi_{1053}(743,\cdot)\) \(\chi_{1053}(752,\cdot)\) \(\chi_{1053}(812,\cdot)\) \(\chi_{1053}(839,\cdot)\) \(\chi_{1053}(860,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{108})$
Fixed field: Number field defined by a degree 108 polynomial (not computed)

Values on generators

\((326,730)\) → \((e\left(\frac{19}{54}\right),e\left(\frac{11}{12}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(14\)\(16\)\(17\)
\( \chi_{ 1053 }(137, a) \) \(1\)\(1\)\(e\left(\frac{29}{108}\right)\)\(e\left(\frac{29}{54}\right)\)\(e\left(\frac{37}{108}\right)\)\(e\left(\frac{77}{108}\right)\)\(e\left(\frac{29}{36}\right)\)\(e\left(\frac{11}{18}\right)\)\(e\left(\frac{107}{108}\right)\)\(e\left(\frac{53}{54}\right)\)\(e\left(\frac{2}{27}\right)\)\(e\left(\frac{4}{9}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1053 }(137,a) \;\) at \(\;a = \) e.g. 2