Properties

Label 1053.cm
Modulus $1053$
Conductor $1053$
Order $108$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1053, base_ring=CyclotomicField(108))
 
M = H._module
 
chi = DirichletCharacter(H, M([50,99]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(20,1053))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(1053\)
Conductor: \(1053\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(108\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{108})$
Fixed field: Number field defined by a degree 108 polynomial (not computed)

First 31 of 36 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(11\) \(14\) \(16\) \(17\)
\(\chi_{1053}(20,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{108}\right)\) \(e\left(\frac{41}{54}\right)\) \(e\left(\frac{97}{108}\right)\) \(e\left(\frac{53}{108}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{47}{108}\right)\) \(e\left(\frac{47}{54}\right)\) \(e\left(\frac{14}{27}\right)\) \(e\left(\frac{1}{9}\right)\)
\(\chi_{1053}(41,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{108}\right)\) \(e\left(\frac{7}{54}\right)\) \(e\left(\frac{35}{108}\right)\) \(e\left(\frac{67}{108}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{37}{108}\right)\) \(e\left(\frac{37}{54}\right)\) \(e\left(\frac{7}{27}\right)\) \(e\left(\frac{5}{9}\right)\)
\(\chi_{1053}(50,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{108}\right)\) \(e\left(\frac{49}{54}\right)\) \(e\left(\frac{29}{108}\right)\) \(e\left(\frac{37}{108}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{43}{108}\right)\) \(e\left(\frac{43}{54}\right)\) \(e\left(\frac{22}{27}\right)\) \(e\left(\frac{8}{9}\right)\)
\(\chi_{1053}(110,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{108}\right)\) \(e\left(\frac{11}{54}\right)\) \(e\left(\frac{55}{108}\right)\) \(e\left(\frac{59}{108}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{89}{108}\right)\) \(e\left(\frac{35}{54}\right)\) \(e\left(\frac{11}{27}\right)\) \(e\left(\frac{4}{9}\right)\)
\(\chi_{1053}(137,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{108}\right)\) \(e\left(\frac{29}{54}\right)\) \(e\left(\frac{37}{108}\right)\) \(e\left(\frac{77}{108}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{107}{108}\right)\) \(e\left(\frac{53}{54}\right)\) \(e\left(\frac{2}{27}\right)\) \(e\left(\frac{4}{9}\right)\)
\(\chi_{1053}(158,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{108}\right)\) \(e\left(\frac{13}{54}\right)\) \(e\left(\frac{11}{108}\right)\) \(e\left(\frac{55}{108}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{61}{108}\right)\) \(e\left(\frac{7}{54}\right)\) \(e\left(\frac{13}{27}\right)\) \(e\left(\frac{8}{9}\right)\)
\(\chi_{1053}(167,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{108}\right)\) \(e\left(\frac{1}{54}\right)\) \(e\left(\frac{5}{108}\right)\) \(e\left(\frac{25}{108}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{67}{108}\right)\) \(e\left(\frac{13}{54}\right)\) \(e\left(\frac{1}{27}\right)\) \(e\left(\frac{2}{9}\right)\)
\(\chi_{1053}(227,\cdot)\) \(1\) \(1\) \(e\left(\frac{107}{108}\right)\) \(e\left(\frac{53}{54}\right)\) \(e\left(\frac{103}{108}\right)\) \(e\left(\frac{83}{108}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{41}{108}\right)\) \(e\left(\frac{41}{54}\right)\) \(e\left(\frac{26}{27}\right)\) \(e\left(\frac{7}{9}\right)\)
\(\chi_{1053}(254,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{108}\right)\) \(e\left(\frac{17}{54}\right)\) \(e\left(\frac{85}{108}\right)\) \(e\left(\frac{101}{108}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{59}{108}\right)\) \(e\left(\frac{5}{54}\right)\) \(e\left(\frac{17}{27}\right)\) \(e\left(\frac{7}{9}\right)\)
\(\chi_{1053}(275,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{108}\right)\) \(e\left(\frac{19}{54}\right)\) \(e\left(\frac{95}{108}\right)\) \(e\left(\frac{43}{108}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{85}{108}\right)\) \(e\left(\frac{31}{54}\right)\) \(e\left(\frac{19}{27}\right)\) \(e\left(\frac{2}{9}\right)\)
\(\chi_{1053}(284,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{108}\right)\) \(e\left(\frac{7}{54}\right)\) \(e\left(\frac{89}{108}\right)\) \(e\left(\frac{13}{108}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{91}{108}\right)\) \(e\left(\frac{37}{54}\right)\) \(e\left(\frac{7}{27}\right)\) \(e\left(\frac{5}{9}\right)\)
\(\chi_{1053}(344,\cdot)\) \(1\) \(1\) \(e\left(\frac{95}{108}\right)\) \(e\left(\frac{41}{54}\right)\) \(e\left(\frac{43}{108}\right)\) \(e\left(\frac{107}{108}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{101}{108}\right)\) \(e\left(\frac{47}{54}\right)\) \(e\left(\frac{14}{27}\right)\) \(e\left(\frac{1}{9}\right)\)
\(\chi_{1053}(371,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{108}\right)\) \(e\left(\frac{5}{54}\right)\) \(e\left(\frac{25}{108}\right)\) \(e\left(\frac{17}{108}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{11}{108}\right)\) \(e\left(\frac{11}{54}\right)\) \(e\left(\frac{5}{27}\right)\) \(e\left(\frac{1}{9}\right)\)
\(\chi_{1053}(392,\cdot)\) \(1\) \(1\) \(e\left(\frac{79}{108}\right)\) \(e\left(\frac{25}{54}\right)\) \(e\left(\frac{71}{108}\right)\) \(e\left(\frac{31}{108}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{108}\right)\) \(e\left(\frac{1}{54}\right)\) \(e\left(\frac{25}{27}\right)\) \(e\left(\frac{5}{9}\right)\)
\(\chi_{1053}(401,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{108}\right)\) \(e\left(\frac{13}{54}\right)\) \(e\left(\frac{65}{108}\right)\) \(e\left(\frac{1}{108}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{7}{108}\right)\) \(e\left(\frac{7}{54}\right)\) \(e\left(\frac{13}{27}\right)\) \(e\left(\frac{8}{9}\right)\)
\(\chi_{1053}(461,\cdot)\) \(1\) \(1\) \(e\left(\frac{83}{108}\right)\) \(e\left(\frac{29}{54}\right)\) \(e\left(\frac{91}{108}\right)\) \(e\left(\frac{23}{108}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{53}{108}\right)\) \(e\left(\frac{53}{54}\right)\) \(e\left(\frac{2}{27}\right)\) \(e\left(\frac{4}{9}\right)\)
\(\chi_{1053}(488,\cdot)\) \(1\) \(1\) \(e\left(\frac{101}{108}\right)\) \(e\left(\frac{47}{54}\right)\) \(e\left(\frac{73}{108}\right)\) \(e\left(\frac{41}{108}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{71}{108}\right)\) \(e\left(\frac{17}{54}\right)\) \(e\left(\frac{20}{27}\right)\) \(e\left(\frac{4}{9}\right)\)
\(\chi_{1053}(509,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{108}\right)\) \(e\left(\frac{31}{54}\right)\) \(e\left(\frac{47}{108}\right)\) \(e\left(\frac{19}{108}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{25}{108}\right)\) \(e\left(\frac{25}{54}\right)\) \(e\left(\frac{4}{27}\right)\) \(e\left(\frac{8}{9}\right)\)
\(\chi_{1053}(518,\cdot)\) \(1\) \(1\) \(e\left(\frac{73}{108}\right)\) \(e\left(\frac{19}{54}\right)\) \(e\left(\frac{41}{108}\right)\) \(e\left(\frac{97}{108}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{31}{108}\right)\) \(e\left(\frac{31}{54}\right)\) \(e\left(\frac{19}{27}\right)\) \(e\left(\frac{2}{9}\right)\)
\(\chi_{1053}(578,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{108}\right)\) \(e\left(\frac{17}{54}\right)\) \(e\left(\frac{31}{108}\right)\) \(e\left(\frac{47}{108}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{5}{108}\right)\) \(e\left(\frac{5}{54}\right)\) \(e\left(\frac{17}{27}\right)\) \(e\left(\frac{7}{9}\right)\)
\(\chi_{1053}(605,\cdot)\) \(1\) \(1\) \(e\left(\frac{89}{108}\right)\) \(e\left(\frac{35}{54}\right)\) \(e\left(\frac{13}{108}\right)\) \(e\left(\frac{65}{108}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{23}{108}\right)\) \(e\left(\frac{23}{54}\right)\) \(e\left(\frac{8}{27}\right)\) \(e\left(\frac{7}{9}\right)\)
\(\chi_{1053}(626,\cdot)\) \(1\) \(1\) \(e\left(\frac{91}{108}\right)\) \(e\left(\frac{37}{54}\right)\) \(e\left(\frac{23}{108}\right)\) \(e\left(\frac{7}{108}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{49}{108}\right)\) \(e\left(\frac{49}{54}\right)\) \(e\left(\frac{10}{27}\right)\) \(e\left(\frac{2}{9}\right)\)
\(\chi_{1053}(635,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{108}\right)\) \(e\left(\frac{25}{54}\right)\) \(e\left(\frac{17}{108}\right)\) \(e\left(\frac{85}{108}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{55}{108}\right)\) \(e\left(\frac{1}{54}\right)\) \(e\left(\frac{25}{27}\right)\) \(e\left(\frac{5}{9}\right)\)
\(\chi_{1053}(695,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{108}\right)\) \(e\left(\frac{5}{54}\right)\) \(e\left(\frac{79}{108}\right)\) \(e\left(\frac{71}{108}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{65}{108}\right)\) \(e\left(\frac{11}{54}\right)\) \(e\left(\frac{5}{27}\right)\) \(e\left(\frac{1}{9}\right)\)
\(\chi_{1053}(722,\cdot)\) \(1\) \(1\) \(e\left(\frac{77}{108}\right)\) \(e\left(\frac{23}{54}\right)\) \(e\left(\frac{61}{108}\right)\) \(e\left(\frac{89}{108}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{83}{108}\right)\) \(e\left(\frac{29}{54}\right)\) \(e\left(\frac{23}{27}\right)\) \(e\left(\frac{1}{9}\right)\)
\(\chi_{1053}(743,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{108}\right)\) \(e\left(\frac{43}{54}\right)\) \(e\left(\frac{107}{108}\right)\) \(e\left(\frac{103}{108}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{73}{108}\right)\) \(e\left(\frac{19}{54}\right)\) \(e\left(\frac{16}{27}\right)\) \(e\left(\frac{5}{9}\right)\)
\(\chi_{1053}(752,\cdot)\) \(1\) \(1\) \(e\left(\frac{85}{108}\right)\) \(e\left(\frac{31}{54}\right)\) \(e\left(\frac{101}{108}\right)\) \(e\left(\frac{73}{108}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{79}{108}\right)\) \(e\left(\frac{25}{54}\right)\) \(e\left(\frac{4}{27}\right)\) \(e\left(\frac{8}{9}\right)\)
\(\chi_{1053}(812,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{108}\right)\) \(e\left(\frac{47}{54}\right)\) \(e\left(\frac{19}{108}\right)\) \(e\left(\frac{95}{108}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{17}{108}\right)\) \(e\left(\frac{17}{54}\right)\) \(e\left(\frac{20}{27}\right)\) \(e\left(\frac{4}{9}\right)\)
\(\chi_{1053}(839,\cdot)\) \(1\) \(1\) \(e\left(\frac{65}{108}\right)\) \(e\left(\frac{11}{54}\right)\) \(e\left(\frac{1}{108}\right)\) \(e\left(\frac{5}{108}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{35}{108}\right)\) \(e\left(\frac{35}{54}\right)\) \(e\left(\frac{11}{27}\right)\) \(e\left(\frac{4}{9}\right)\)
\(\chi_{1053}(860,\cdot)\) \(1\) \(1\) \(e\left(\frac{103}{108}\right)\) \(e\left(\frac{49}{54}\right)\) \(e\left(\frac{83}{108}\right)\) \(e\left(\frac{91}{108}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{97}{108}\right)\) \(e\left(\frac{43}{54}\right)\) \(e\left(\frac{22}{27}\right)\) \(e\left(\frac{8}{9}\right)\)
\(\chi_{1053}(869,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{108}\right)\) \(e\left(\frac{37}{54}\right)\) \(e\left(\frac{77}{108}\right)\) \(e\left(\frac{61}{108}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{103}{108}\right)\) \(e\left(\frac{49}{54}\right)\) \(e\left(\frac{10}{27}\right)\) \(e\left(\frac{2}{9}\right)\)