L(s) = 1 | + (−0.699 + 0.714i)2-s + (−0.0209 − 0.999i)4-s + (−0.104 − 0.994i)7-s + (0.728 + 0.684i)8-s + (−0.699 + 0.714i)11-s + (0.146 + 0.989i)13-s + (0.783 + 0.621i)14-s + (−0.999 + 0.0418i)16-s + (0.876 − 0.481i)17-s + (−0.187 − 0.982i)19-s + (−0.0209 − 0.999i)22-s + (0.832 − 0.553i)23-s + (−0.809 − 0.587i)26-s + (−0.992 + 0.125i)28-s + (0.387 − 0.921i)29-s + ⋯ |
L(s) = 1 | + (−0.699 + 0.714i)2-s + (−0.0209 − 0.999i)4-s + (−0.104 − 0.994i)7-s + (0.728 + 0.684i)8-s + (−0.699 + 0.714i)11-s + (0.146 + 0.989i)13-s + (0.783 + 0.621i)14-s + (−0.999 + 0.0418i)16-s + (0.876 − 0.481i)17-s + (−0.187 − 0.982i)19-s + (−0.0209 − 0.999i)22-s + (0.832 − 0.553i)23-s + (−0.809 − 0.587i)26-s + (−0.992 + 0.125i)28-s + (0.387 − 0.921i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1125 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.896 - 0.442i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1125 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.896 - 0.442i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8537486905 - 0.1989877220i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8537486905 - 0.1989877220i\) |
\(L(1)\) |
\(\approx\) |
\(0.7342182759 + 0.07436976039i\) |
\(L(1)\) |
\(\approx\) |
\(0.7342182759 + 0.07436976039i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (-0.699 + 0.714i)T \) |
| 7 | \( 1 + (-0.104 - 0.994i)T \) |
| 11 | \( 1 + (-0.699 + 0.714i)T \) |
| 13 | \( 1 + (0.146 + 0.989i)T \) |
| 17 | \( 1 + (0.876 - 0.481i)T \) |
| 19 | \( 1 + (-0.187 - 0.982i)T \) |
| 23 | \( 1 + (0.832 - 0.553i)T \) |
| 29 | \( 1 + (0.387 - 0.921i)T \) |
| 31 | \( 1 + (-0.855 - 0.518i)T \) |
| 37 | \( 1 + (0.535 + 0.844i)T \) |
| 41 | \( 1 + (-0.895 + 0.444i)T \) |
| 43 | \( 1 + (0.669 + 0.743i)T \) |
| 47 | \( 1 + (0.228 + 0.973i)T \) |
| 53 | \( 1 + (-0.425 - 0.904i)T \) |
| 59 | \( 1 + (0.985 + 0.166i)T \) |
| 61 | \( 1 + (-0.895 - 0.444i)T \) |
| 67 | \( 1 + (0.387 + 0.921i)T \) |
| 71 | \( 1 + (0.728 - 0.684i)T \) |
| 73 | \( 1 + (-0.637 - 0.770i)T \) |
| 79 | \( 1 + (-0.756 - 0.653i)T \) |
| 83 | \( 1 + (0.944 + 0.328i)T \) |
| 89 | \( 1 + (-0.637 - 0.770i)T \) |
| 97 | \( 1 + (0.387 - 0.921i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.44674160988394509430345214640, −20.61805136095396072505801275328, −19.81368717536164312129871212669, −18.85706365794764122898653270313, −18.57737360988408179833524006779, −17.76128200827328632361720149934, −16.85215752417966595076176691999, −16.10021615368093656296102100470, −15.3757018404283817825041530364, −14.37647439799588358949633964001, −13.23527495898863114370846745652, −12.5676132233221067543785025131, −12.02939643813723150404101522784, −10.87746361849005757635680761673, −10.46921282235614210157919784546, −9.46670273269116663596146809552, −8.6038928100414754103009341357, −8.086541061362092856621129403301, −7.15669606894015829784706720125, −5.79737432354530203217258491389, −5.24629184147766848740864095525, −3.63712821559954364321527751873, −3.10897875765849272325257842689, −2.11757065125457149544076786931, −1.00406469485695521152757939954,
0.56056841120251279352720423334, 1.69277601173625708728649855960, 2.87567176612297604374927867629, 4.39596455218428632476554941976, 4.88212942441986386858394264833, 6.12687128157302149606691922777, 6.971518452076323182507911874072, 7.4957195477144183356180304542, 8.3663901854344146853219050288, 9.45740873369882335338683855719, 9.91941917517450112024221622365, 10.86435817617081444380846505626, 11.532419080526455650052909507199, 12.896094867816705410453357680370, 13.6120106728576561276490611626, 14.42071608208784324837328609867, 15.14229606741243741913256475778, 16.05379599961238947217304098592, 16.68466574219661844409750706148, 17.31552699309036237715399245603, 18.129069845214816429280248567947, 18.90591107459016628067997810860, 19.548944646474774461642809186406, 20.50677405214995765021260688621, 20.96323296948546459182261294378