Properties

Label 1125.391
Modulus 11251125
Conductor 11251125
Order 7575
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1125, base_ring=CyclotomicField(150))
 
M = H._module
 
chi = DirichletCharacter(H, M([50,6]))
 
pari: [g,chi] = znchar(Mod(391,1125))
 

Basic properties

Modulus: 11251125
Conductor: 11251125
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 7575
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1125.bc

χ1125(16,)\chi_{1125}(16,\cdot) χ1125(31,)\chi_{1125}(31,\cdot) χ1125(61,)\chi_{1125}(61,\cdot) χ1125(106,)\chi_{1125}(106,\cdot) χ1125(121,)\chi_{1125}(121,\cdot) χ1125(166,)\chi_{1125}(166,\cdot) χ1125(196,)\chi_{1125}(196,\cdot) χ1125(211,)\chi_{1125}(211,\cdot) χ1125(241,)\chi_{1125}(241,\cdot) χ1125(256,)\chi_{1125}(256,\cdot) χ1125(286,)\chi_{1125}(286,\cdot) χ1125(331,)\chi_{1125}(331,\cdot) χ1125(346,)\chi_{1125}(346,\cdot) χ1125(391,)\chi_{1125}(391,\cdot) χ1125(421,)\chi_{1125}(421,\cdot) χ1125(436,)\chi_{1125}(436,\cdot) χ1125(466,)\chi_{1125}(466,\cdot) χ1125(481,)\chi_{1125}(481,\cdot) χ1125(511,)\chi_{1125}(511,\cdot) χ1125(556,)\chi_{1125}(556,\cdot) χ1125(571,)\chi_{1125}(571,\cdot) χ1125(616,)\chi_{1125}(616,\cdot) χ1125(646,)\chi_{1125}(646,\cdot) χ1125(661,)\chi_{1125}(661,\cdot) χ1125(691,)\chi_{1125}(691,\cdot) χ1125(706,)\chi_{1125}(706,\cdot) χ1125(736,)\chi_{1125}(736,\cdot) χ1125(781,)\chi_{1125}(781,\cdot) χ1125(796,)\chi_{1125}(796,\cdot) χ1125(841,)\chi_{1125}(841,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ75)\Q(\zeta_{75})
Fixed field: Number field defined by a degree 75 polynomial

Values on generators

(1001,127)(1001,127)(e(13),e(125))(e\left(\frac{1}{3}\right),e\left(\frac{1}{25}\right))

First values

aa 1-11122447788111113131414161617171919
χ1125(391,a) \chi_{ 1125 }(391, a) 1111e(2875)e\left(\frac{28}{75}\right)e(5675)e\left(\frac{56}{75}\right)e(1115)e\left(\frac{11}{15}\right)e(325)e\left(\frac{3}{25}\right)e(2875)e\left(\frac{28}{75}\right)e(1775)e\left(\frac{17}{75}\right)e(875)e\left(\frac{8}{75}\right)e(3775)e\left(\frac{37}{75}\right)e(2325)e\left(\frac{23}{25}\right)e(1825)e\left(\frac{18}{25}\right)
sage: chi.jacobi_sum(n)
 
χ1125(391,a)   \chi_{ 1125 }(391,a) \; at   a=\;a = e.g. 2