Properties

Label 1125.331
Modulus $1125$
Conductor $1125$
Order $75$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1125, base_ring=CyclotomicField(150))
 
M = H._module
 
chi = DirichletCharacter(H, M([100,42]))
 
pari: [g,chi] = znchar(Mod(331,1125))
 

Basic properties

Modulus: \(1125\)
Conductor: \(1125\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(75\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1125.bc

\(\chi_{1125}(16,\cdot)\) \(\chi_{1125}(31,\cdot)\) \(\chi_{1125}(61,\cdot)\) \(\chi_{1125}(106,\cdot)\) \(\chi_{1125}(121,\cdot)\) \(\chi_{1125}(166,\cdot)\) \(\chi_{1125}(196,\cdot)\) \(\chi_{1125}(211,\cdot)\) \(\chi_{1125}(241,\cdot)\) \(\chi_{1125}(256,\cdot)\) \(\chi_{1125}(286,\cdot)\) \(\chi_{1125}(331,\cdot)\) \(\chi_{1125}(346,\cdot)\) \(\chi_{1125}(391,\cdot)\) \(\chi_{1125}(421,\cdot)\) \(\chi_{1125}(436,\cdot)\) \(\chi_{1125}(466,\cdot)\) \(\chi_{1125}(481,\cdot)\) \(\chi_{1125}(511,\cdot)\) \(\chi_{1125}(556,\cdot)\) \(\chi_{1125}(571,\cdot)\) \(\chi_{1125}(616,\cdot)\) \(\chi_{1125}(646,\cdot)\) \(\chi_{1125}(661,\cdot)\) \(\chi_{1125}(691,\cdot)\) \(\chi_{1125}(706,\cdot)\) \(\chi_{1125}(736,\cdot)\) \(\chi_{1125}(781,\cdot)\) \(\chi_{1125}(796,\cdot)\) \(\chi_{1125}(841,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{75})$
Fixed field: Number field defined by a degree 75 polynomial

Values on generators

\((1001,127)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{7}{25}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(19\)
\( \chi_{ 1125 }(331, a) \) \(1\)\(1\)\(e\left(\frac{71}{75}\right)\)\(e\left(\frac{67}{75}\right)\)\(e\left(\frac{7}{15}\right)\)\(e\left(\frac{21}{25}\right)\)\(e\left(\frac{71}{75}\right)\)\(e\left(\frac{19}{75}\right)\)\(e\left(\frac{31}{75}\right)\)\(e\left(\frac{59}{75}\right)\)\(e\left(\frac{11}{25}\right)\)\(e\left(\frac{1}{25}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1125 }(331,a) \;\) at \(\;a = \) e.g. 2