Properties

Label 1125.bc
Modulus $1125$
Conductor $1125$
Order $75$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1125, base_ring=CyclotomicField(150))
 
M = H._module
 
chi = DirichletCharacter(H, M([100,6]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(16,1125))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(1125\)
Conductor: \(1125\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(75\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{75})$
Fixed field: Number field defined by a degree 75 polynomial

First 31 of 40 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(7\) \(8\) \(11\) \(13\) \(14\) \(16\) \(17\) \(19\)
\(\chi_{1125}(16,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{75}\right)\) \(e\left(\frac{31}{75}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{3}{25}\right)\) \(e\left(\frac{53}{75}\right)\) \(e\left(\frac{67}{75}\right)\) \(e\left(\frac{58}{75}\right)\) \(e\left(\frac{62}{75}\right)\) \(e\left(\frac{23}{25}\right)\) \(e\left(\frac{18}{25}\right)\)
\(\chi_{1125}(31,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{75}\right)\) \(e\left(\frac{47}{75}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{11}{25}\right)\) \(e\left(\frac{61}{75}\right)\) \(e\left(\frac{29}{75}\right)\) \(e\left(\frac{71}{75}\right)\) \(e\left(\frac{19}{75}\right)\) \(e\left(\frac{1}{25}\right)\) \(e\left(\frac{16}{25}\right)\)
\(\chi_{1125}(61,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{75}\right)\) \(e\left(\frac{34}{75}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{17}{25}\right)\) \(e\left(\frac{17}{75}\right)\) \(e\left(\frac{13}{75}\right)\) \(e\left(\frac{37}{75}\right)\) \(e\left(\frac{68}{75}\right)\) \(e\left(\frac{22}{25}\right)\) \(e\left(\frac{2}{25}\right)\)
\(\chi_{1125}(106,\cdot)\) \(1\) \(1\) \(e\left(\frac{26}{75}\right)\) \(e\left(\frac{52}{75}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{1}{25}\right)\) \(e\left(\frac{26}{75}\right)\) \(e\left(\frac{64}{75}\right)\) \(e\left(\frac{61}{75}\right)\) \(e\left(\frac{29}{75}\right)\) \(e\left(\frac{16}{25}\right)\) \(e\left(\frac{6}{25}\right)\)
\(\chi_{1125}(121,\cdot)\) \(1\) \(1\) \(e\left(\frac{64}{75}\right)\) \(e\left(\frac{53}{75}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{14}{25}\right)\) \(e\left(\frac{64}{75}\right)\) \(e\left(\frac{71}{75}\right)\) \(e\left(\frac{29}{75}\right)\) \(e\left(\frac{31}{75}\right)\) \(e\left(\frac{24}{25}\right)\) \(e\left(\frac{9}{25}\right)\)
\(\chi_{1125}(166,\cdot)\) \(1\) \(1\) \(e\left(\frac{58}{75}\right)\) \(e\left(\frac{41}{75}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{8}{25}\right)\) \(e\left(\frac{58}{75}\right)\) \(e\left(\frac{62}{75}\right)\) \(e\left(\frac{38}{75}\right)\) \(e\left(\frac{7}{75}\right)\) \(e\left(\frac{3}{25}\right)\) \(e\left(\frac{23}{25}\right)\)
\(\chi_{1125}(196,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{75}\right)\) \(e\left(\frac{58}{75}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{4}{25}\right)\) \(e\left(\frac{29}{75}\right)\) \(e\left(\frac{31}{75}\right)\) \(e\left(\frac{19}{75}\right)\) \(e\left(\frac{41}{75}\right)\) \(e\left(\frac{14}{25}\right)\) \(e\left(\frac{24}{25}\right)\)
\(\chi_{1125}(211,\cdot)\) \(1\) \(1\) \(e\left(\frac{22}{75}\right)\) \(e\left(\frac{44}{75}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{22}{25}\right)\) \(e\left(\frac{22}{75}\right)\) \(e\left(\frac{8}{75}\right)\) \(e\left(\frac{17}{75}\right)\) \(e\left(\frac{13}{75}\right)\) \(e\left(\frac{2}{25}\right)\) \(e\left(\frac{7}{25}\right)\)
\(\chi_{1125}(241,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{75}\right)\) \(e\left(\frac{46}{75}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{23}{25}\right)\) \(e\left(\frac{23}{75}\right)\) \(e\left(\frac{22}{75}\right)\) \(e\left(\frac{28}{75}\right)\) \(e\left(\frac{17}{75}\right)\) \(e\left(\frac{18}{25}\right)\) \(e\left(\frac{13}{25}\right)\)
\(\chi_{1125}(256,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{75}\right)\) \(e\left(\frac{62}{75}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{6}{25}\right)\) \(e\left(\frac{31}{75}\right)\) \(e\left(\frac{59}{75}\right)\) \(e\left(\frac{41}{75}\right)\) \(e\left(\frac{49}{75}\right)\) \(e\left(\frac{21}{25}\right)\) \(e\left(\frac{11}{25}\right)\)
\(\chi_{1125}(286,\cdot)\) \(1\) \(1\) \(e\left(\frac{62}{75}\right)\) \(e\left(\frac{49}{75}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{12}{25}\right)\) \(e\left(\frac{62}{75}\right)\) \(e\left(\frac{43}{75}\right)\) \(e\left(\frac{7}{75}\right)\) \(e\left(\frac{23}{75}\right)\) \(e\left(\frac{17}{25}\right)\) \(e\left(\frac{22}{25}\right)\)
\(\chi_{1125}(331,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{75}\right)\) \(e\left(\frac{67}{75}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{21}{25}\right)\) \(e\left(\frac{71}{75}\right)\) \(e\left(\frac{19}{75}\right)\) \(e\left(\frac{31}{75}\right)\) \(e\left(\frac{59}{75}\right)\) \(e\left(\frac{11}{25}\right)\) \(e\left(\frac{1}{25}\right)\)
\(\chi_{1125}(346,\cdot)\) \(1\) \(1\) \(e\left(\frac{34}{75}\right)\) \(e\left(\frac{68}{75}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{9}{25}\right)\) \(e\left(\frac{34}{75}\right)\) \(e\left(\frac{26}{75}\right)\) \(e\left(\frac{74}{75}\right)\) \(e\left(\frac{61}{75}\right)\) \(e\left(\frac{19}{25}\right)\) \(e\left(\frac{4}{25}\right)\)
\(\chi_{1125}(391,\cdot)\) \(1\) \(1\) \(e\left(\frac{28}{75}\right)\) \(e\left(\frac{56}{75}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{3}{25}\right)\) \(e\left(\frac{28}{75}\right)\) \(e\left(\frac{17}{75}\right)\) \(e\left(\frac{8}{75}\right)\) \(e\left(\frac{37}{75}\right)\) \(e\left(\frac{23}{25}\right)\) \(e\left(\frac{18}{25}\right)\)
\(\chi_{1125}(421,\cdot)\) \(1\) \(1\) \(e\left(\frac{74}{75}\right)\) \(e\left(\frac{73}{75}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{24}{25}\right)\) \(e\left(\frac{74}{75}\right)\) \(e\left(\frac{61}{75}\right)\) \(e\left(\frac{64}{75}\right)\) \(e\left(\frac{71}{75}\right)\) \(e\left(\frac{9}{25}\right)\) \(e\left(\frac{19}{25}\right)\)
\(\chi_{1125}(436,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{75}\right)\) \(e\left(\frac{59}{75}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{17}{25}\right)\) \(e\left(\frac{67}{75}\right)\) \(e\left(\frac{38}{75}\right)\) \(e\left(\frac{62}{75}\right)\) \(e\left(\frac{43}{75}\right)\) \(e\left(\frac{22}{25}\right)\) \(e\left(\frac{2}{25}\right)\)
\(\chi_{1125}(466,\cdot)\) \(1\) \(1\) \(e\left(\frac{68}{75}\right)\) \(e\left(\frac{61}{75}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{18}{25}\right)\) \(e\left(\frac{68}{75}\right)\) \(e\left(\frac{52}{75}\right)\) \(e\left(\frac{73}{75}\right)\) \(e\left(\frac{47}{75}\right)\) \(e\left(\frac{13}{25}\right)\) \(e\left(\frac{8}{25}\right)\)
\(\chi_{1125}(481,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{75}\right)\) \(e\left(\frac{2}{75}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{1}{25}\right)\) \(e\left(\frac{1}{75}\right)\) \(e\left(\frac{14}{75}\right)\) \(e\left(\frac{11}{75}\right)\) \(e\left(\frac{4}{75}\right)\) \(e\left(\frac{16}{25}\right)\) \(e\left(\frac{6}{25}\right)\)
\(\chi_{1125}(511,\cdot)\) \(1\) \(1\) \(e\left(\frac{32}{75}\right)\) \(e\left(\frac{64}{75}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{7}{25}\right)\) \(e\left(\frac{32}{75}\right)\) \(e\left(\frac{73}{75}\right)\) \(e\left(\frac{52}{75}\right)\) \(e\left(\frac{53}{75}\right)\) \(e\left(\frac{12}{25}\right)\) \(e\left(\frac{17}{25}\right)\)
\(\chi_{1125}(556,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{75}\right)\) \(e\left(\frac{7}{75}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{16}{25}\right)\) \(e\left(\frac{41}{75}\right)\) \(e\left(\frac{49}{75}\right)\) \(e\left(\frac{1}{75}\right)\) \(e\left(\frac{14}{75}\right)\) \(e\left(\frac{6}{25}\right)\) \(e\left(\frac{21}{25}\right)\)
\(\chi_{1125}(571,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{75}\right)\) \(e\left(\frac{8}{75}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{4}{25}\right)\) \(e\left(\frac{4}{75}\right)\) \(e\left(\frac{56}{75}\right)\) \(e\left(\frac{44}{75}\right)\) \(e\left(\frac{16}{75}\right)\) \(e\left(\frac{14}{25}\right)\) \(e\left(\frac{24}{25}\right)\)
\(\chi_{1125}(616,\cdot)\) \(1\) \(1\) \(e\left(\frac{73}{75}\right)\) \(e\left(\frac{71}{75}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{23}{25}\right)\) \(e\left(\frac{73}{75}\right)\) \(e\left(\frac{47}{75}\right)\) \(e\left(\frac{53}{75}\right)\) \(e\left(\frac{67}{75}\right)\) \(e\left(\frac{18}{25}\right)\) \(e\left(\frac{13}{25}\right)\)
\(\chi_{1125}(646,\cdot)\) \(1\) \(1\) \(e\left(\frac{44}{75}\right)\) \(e\left(\frac{13}{75}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{19}{25}\right)\) \(e\left(\frac{44}{75}\right)\) \(e\left(\frac{16}{75}\right)\) \(e\left(\frac{34}{75}\right)\) \(e\left(\frac{26}{75}\right)\) \(e\left(\frac{4}{25}\right)\) \(e\left(\frac{14}{25}\right)\)
\(\chi_{1125}(661,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{75}\right)\) \(e\left(\frac{74}{75}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{12}{25}\right)\) \(e\left(\frac{37}{75}\right)\) \(e\left(\frac{68}{75}\right)\) \(e\left(\frac{32}{75}\right)\) \(e\left(\frac{73}{75}\right)\) \(e\left(\frac{17}{25}\right)\) \(e\left(\frac{22}{25}\right)\)
\(\chi_{1125}(691,\cdot)\) \(1\) \(1\) \(e\left(\frac{38}{75}\right)\) \(e\left(\frac{1}{75}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{13}{25}\right)\) \(e\left(\frac{38}{75}\right)\) \(e\left(\frac{7}{75}\right)\) \(e\left(\frac{43}{75}\right)\) \(e\left(\frac{2}{75}\right)\) \(e\left(\frac{8}{25}\right)\) \(e\left(\frac{3}{25}\right)\)
\(\chi_{1125}(706,\cdot)\) \(1\) \(1\) \(e\left(\frac{46}{75}\right)\) \(e\left(\frac{17}{75}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{21}{25}\right)\) \(e\left(\frac{46}{75}\right)\) \(e\left(\frac{44}{75}\right)\) \(e\left(\frac{56}{75}\right)\) \(e\left(\frac{34}{75}\right)\) \(e\left(\frac{11}{25}\right)\) \(e\left(\frac{1}{25}\right)\)
\(\chi_{1125}(736,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{75}\right)\) \(e\left(\frac{4}{75}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{2}{25}\right)\) \(e\left(\frac{2}{75}\right)\) \(e\left(\frac{28}{75}\right)\) \(e\left(\frac{22}{75}\right)\) \(e\left(\frac{8}{75}\right)\) \(e\left(\frac{7}{25}\right)\) \(e\left(\frac{12}{25}\right)\)
\(\chi_{1125}(781,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{75}\right)\) \(e\left(\frac{22}{75}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{11}{25}\right)\) \(e\left(\frac{11}{75}\right)\) \(e\left(\frac{4}{75}\right)\) \(e\left(\frac{46}{75}\right)\) \(e\left(\frac{44}{75}\right)\) \(e\left(\frac{1}{25}\right)\) \(e\left(\frac{16}{25}\right)\)
\(\chi_{1125}(796,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{75}\right)\) \(e\left(\frac{23}{75}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{24}{25}\right)\) \(e\left(\frac{49}{75}\right)\) \(e\left(\frac{11}{75}\right)\) \(e\left(\frac{14}{75}\right)\) \(e\left(\frac{46}{75}\right)\) \(e\left(\frac{9}{25}\right)\) \(e\left(\frac{19}{25}\right)\)
\(\chi_{1125}(841,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{75}\right)\) \(e\left(\frac{11}{75}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{18}{25}\right)\) \(e\left(\frac{43}{75}\right)\) \(e\left(\frac{2}{75}\right)\) \(e\left(\frac{23}{75}\right)\) \(e\left(\frac{22}{75}\right)\) \(e\left(\frac{13}{25}\right)\) \(e\left(\frac{8}{25}\right)\)
\(\chi_{1125}(871,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{75}\right)\) \(e\left(\frac{28}{75}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{14}{25}\right)\) \(e\left(\frac{14}{75}\right)\) \(e\left(\frac{46}{75}\right)\) \(e\left(\frac{4}{75}\right)\) \(e\left(\frac{56}{75}\right)\) \(e\left(\frac{24}{25}\right)\) \(e\left(\frac{9}{25}\right)\)