L(s) = 1 | + i·2-s + (−0.707 + 0.707i)3-s − 4-s + (0.707 − 0.707i)5-s + (−0.707 − 0.707i)6-s − i·8-s − i·9-s + (0.707 + 0.707i)10-s + (0.707 + 0.707i)11-s + (0.707 − 0.707i)12-s + 13-s + i·15-s + 16-s + 18-s − i·19-s + (−0.707 + 0.707i)20-s + ⋯ |
L(s) = 1 | + i·2-s + (−0.707 + 0.707i)3-s − 4-s + (0.707 − 0.707i)5-s + (−0.707 − 0.707i)6-s − i·8-s − i·9-s + (0.707 + 0.707i)10-s + (0.707 + 0.707i)11-s + (0.707 − 0.707i)12-s + 13-s + i·15-s + 16-s + 18-s − i·19-s + (−0.707 + 0.707i)20-s + ⋯ |
Λ(s)=(=(119s/2ΓR(s+1)L(s)(0.0465+0.998i)Λ(1−s)
Λ(s)=(=(119s/2ΓR(s+1)L(s)(0.0465+0.998i)Λ(1−s)
Degree: |
1 |
Conductor: |
119
= 7⋅17
|
Sign: |
0.0465+0.998i
|
Analytic conductor: |
12.7883 |
Root analytic conductor: |
12.7883 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ119(104,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 119, (1: ), 0.0465+0.998i)
|
Particular Values
L(21) |
≈ |
1.066469631+1.017966179i |
L(21) |
≈ |
1.066469631+1.017966179i |
L(1) |
≈ |
0.8404659796+0.5374673593i |
L(1) |
≈ |
0.8404659796+0.5374673593i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 17 | 1 |
good | 2 | 1+iT |
| 3 | 1+(−0.707+0.707i)T |
| 5 | 1+(0.707−0.707i)T |
| 11 | 1+(0.707+0.707i)T |
| 13 | 1+T |
| 19 | 1−iT |
| 23 | 1+(0.707+0.707i)T |
| 29 | 1+(−0.707+0.707i)T |
| 31 | 1+(−0.707+0.707i)T |
| 37 | 1+(0.707−0.707i)T |
| 41 | 1+(0.707+0.707i)T |
| 43 | 1−iT |
| 47 | 1+T |
| 53 | 1+iT |
| 59 | 1+iT |
| 61 | 1+(0.707+0.707i)T |
| 67 | 1+T |
| 71 | 1+(0.707−0.707i)T |
| 73 | 1+(0.707−0.707i)T |
| 79 | 1+(0.707+0.707i)T |
| 83 | 1−iT |
| 89 | 1+T |
| 97 | 1+(0.707−0.707i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−28.92167060237542181435664995847, −27.89883046894129371580915458288, −26.88677282860871406256465082334, −25.63726567718300948646105282593, −24.47970725280634799134514195143, −23.150565705732241763443801647400, −22.48703979382474311162939262044, −21.607683555952599830581238569615, −20.509578656241156500198515585323, −18.8992602453156359741840638794, −18.67813161460662234422070960688, −17.51502821024931154992006284961, −16.61655532565044400706742325637, −14.52150374107314659716874412424, −13.61323190702275513947841390927, −12.73521229464190250832872625854, −11.37802795597352980230999150356, −10.85327752319942792056246588287, −9.55022063816824055719577028055, −8.12925354977670364495999194388, −6.44353938097737956140880596542, −5.55447996823304017732847671032, −3.73733941075828220862983708265, −2.21451011697088777873194813022, −0.96920045969048869322380202660,
1.028427592119508514596104409711, 3.90620393584661786679158677310, 5.00753774132285936283521415677, 5.914855099386449715940827932400, 7.04591050183741815853336002780, 8.95000652481262482695264314073, 9.3989389995519763351271608825, 10.828200517957034466265427125414, 12.39865344190506494682822716241, 13.44373372343915097522536364191, 14.73107438311144787378516150315, 15.762622746942457547177367091492, 16.66848000356350032117414239748, 17.45656502779304948950889402518, 18.21171388784260202152695717708, 20.04673561725111237127504267326, 21.304181340290929977875469268112, 22.08749195340224838046977675629, 23.163835450410543026202007188188, 23.97547001767572985064524104329, 25.22097127843420203348670698344, 25.893117046149125901352625623762, 27.16904219248149258265353660437, 28.04056687804854903097894452865, 28.64052041436982823655320099563