Properties

Label 1-119-119.104-r1-0-0
Degree 11
Conductor 119119
Sign 0.0465+0.998i0.0465 + 0.998i
Analytic cond. 12.788312.7883
Root an. cond. 12.788312.7883
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s + (−0.707 + 0.707i)3-s − 4-s + (0.707 − 0.707i)5-s + (−0.707 − 0.707i)6-s i·8-s i·9-s + (0.707 + 0.707i)10-s + (0.707 + 0.707i)11-s + (0.707 − 0.707i)12-s + 13-s + i·15-s + 16-s + 18-s i·19-s + (−0.707 + 0.707i)20-s + ⋯
L(s)  = 1  + i·2-s + (−0.707 + 0.707i)3-s − 4-s + (0.707 − 0.707i)5-s + (−0.707 − 0.707i)6-s i·8-s i·9-s + (0.707 + 0.707i)10-s + (0.707 + 0.707i)11-s + (0.707 − 0.707i)12-s + 13-s + i·15-s + 16-s + 18-s i·19-s + (−0.707 + 0.707i)20-s + ⋯

Functional equation

Λ(s)=(119s/2ΓR(s+1)L(s)=((0.0465+0.998i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 119 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.0465 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(119s/2ΓR(s+1)L(s)=((0.0465+0.998i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 119 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.0465 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 119119    =    7177 \cdot 17
Sign: 0.0465+0.998i0.0465 + 0.998i
Analytic conductor: 12.788312.7883
Root analytic conductor: 12.788312.7883
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ119(104,)\chi_{119} (104, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 119, (1: ), 0.0465+0.998i)(1,\ 119,\ (1:\ ),\ 0.0465 + 0.998i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.066469631+1.017966179i1.066469631 + 1.017966179i
L(12)L(\frac12) \approx 1.066469631+1.017966179i1.066469631 + 1.017966179i
L(1)L(1) \approx 0.8404659796+0.5374673593i0.8404659796 + 0.5374673593i
L(1)L(1) \approx 0.8404659796+0.5374673593i0.8404659796 + 0.5374673593i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad7 1 1
17 1 1
good2 1+iT 1 + iT
3 1+(0.707+0.707i)T 1 + (-0.707 + 0.707i)T
5 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
11 1+(0.707+0.707i)T 1 + (0.707 + 0.707i)T
13 1+T 1 + T
19 1iT 1 - iT
23 1+(0.707+0.707i)T 1 + (0.707 + 0.707i)T
29 1+(0.707+0.707i)T 1 + (-0.707 + 0.707i)T
31 1+(0.707+0.707i)T 1 + (-0.707 + 0.707i)T
37 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
41 1+(0.707+0.707i)T 1 + (0.707 + 0.707i)T
43 1iT 1 - iT
47 1+T 1 + T
53 1+iT 1 + iT
59 1+iT 1 + iT
61 1+(0.707+0.707i)T 1 + (0.707 + 0.707i)T
67 1+T 1 + T
71 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
73 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
79 1+(0.707+0.707i)T 1 + (0.707 + 0.707i)T
83 1iT 1 - iT
89 1+T 1 + T
97 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−28.92167060237542181435664995847, −27.89883046894129371580915458288, −26.88677282860871406256465082334, −25.63726567718300948646105282593, −24.47970725280634799134514195143, −23.150565705732241763443801647400, −22.48703979382474311162939262044, −21.607683555952599830581238569615, −20.509578656241156500198515585323, −18.8992602453156359741840638794, −18.67813161460662234422070960688, −17.51502821024931154992006284961, −16.61655532565044400706742325637, −14.52150374107314659716874412424, −13.61323190702275513947841390927, −12.73521229464190250832872625854, −11.37802795597352980230999150356, −10.85327752319942792056246588287, −9.55022063816824055719577028055, −8.12925354977670364495999194388, −6.44353938097737956140880596542, −5.55447996823304017732847671032, −3.73733941075828220862983708265, −2.21451011697088777873194813022, −0.96920045969048869322380202660, 1.028427592119508514596104409711, 3.90620393584661786679158677310, 5.00753774132285936283521415677, 5.914855099386449715940827932400, 7.04591050183741815853336002780, 8.95000652481262482695264314073, 9.3989389995519763351271608825, 10.828200517957034466265427125414, 12.39865344190506494682822716241, 13.44373372343915097522536364191, 14.73107438311144787378516150315, 15.762622746942457547177367091492, 16.66848000356350032117414239748, 17.45656502779304948950889402518, 18.21171388784260202152695717708, 20.04673561725111237127504267326, 21.304181340290929977875469268112, 22.08749195340224838046977675629, 23.163835450410543026202007188188, 23.97547001767572985064524104329, 25.22097127843420203348670698344, 25.893117046149125901352625623762, 27.16904219248149258265353660437, 28.04056687804854903097894452865, 28.64052041436982823655320099563

Graph of the ZZ-function along the critical line