Properties

Label 119.104
Modulus 119119
Conductor 119119
Order 88
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(119, base_ring=CyclotomicField(8))
 
M = H._module
 
chi = DirichletCharacter(H, M([4,7]))
 
pari: [g,chi] = znchar(Mod(104,119))
 

Basic properties

Modulus: 119119
Conductor: 119119
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 88
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 119.l

χ119(76,)\chi_{119}(76,\cdot) χ119(83,)\chi_{119}(83,\cdot) χ119(104,)\chi_{119}(104,\cdot) χ119(111,)\chi_{119}(111,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ8)\Q(\zeta_{8})
Fixed field: 8.0.985223153873.1

Values on generators

(52,71)(52,71)(1,e(78))(-1,e\left(\frac{7}{8}\right))

First values

aa 1-11122334455668899101011111212
χ119(104,a) \chi_{ 119 }(104, a) 1-111iie(38)e\left(\frac{3}{8}\right)1-1e(78)e\left(\frac{7}{8}\right)e(58)e\left(\frac{5}{8}\right)i-ii-ie(18)e\left(\frac{1}{8}\right)e(18)e\left(\frac{1}{8}\right)e(78)e\left(\frac{7}{8}\right)
sage: chi.jacobi_sum(n)
 
χ119(104,a)   \chi_{ 119 }(104,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ119(104,))   \tau_{ a }( \chi_{ 119 }(104,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ119(104,),χ119(n,))   J(\chi_{ 119 }(104,·),\chi_{ 119 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ119(104,))  K(a,b,\chi_{ 119 }(104,·)) \; at   a,b=\; a,b = e.g. 1,2