Properties

Label 1-1455-1455.158-r0-0-0
Degree 11
Conductor 14551455
Sign 0.8350.550i-0.835 - 0.550i
Analytic cond. 6.756996.75699
Root an. cond. 6.756996.75699
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.866 − 0.5i)2-s + (0.5 − 0.866i)4-s + (−0.866 + 0.5i)7-s i·8-s + (0.5 − 0.866i)11-s + (0.866 − 0.5i)13-s + (−0.5 + 0.866i)14-s + (−0.5 − 0.866i)16-s + (−0.866 − 0.5i)17-s − 19-s i·22-s + (0.866 + 0.5i)23-s + (0.5 − 0.866i)26-s + i·28-s + (−0.5 − 0.866i)29-s + ⋯
L(s)  = 1  + (0.866 − 0.5i)2-s + (0.5 − 0.866i)4-s + (−0.866 + 0.5i)7-s i·8-s + (0.5 − 0.866i)11-s + (0.866 − 0.5i)13-s + (−0.5 + 0.866i)14-s + (−0.5 − 0.866i)16-s + (−0.866 − 0.5i)17-s − 19-s i·22-s + (0.866 + 0.5i)23-s + (0.5 − 0.866i)26-s + i·28-s + (−0.5 − 0.866i)29-s + ⋯

Functional equation

Λ(s)=(1455s/2ΓR(s)L(s)=((0.8350.550i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1455 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.835 - 0.550i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(1455s/2ΓR(s)L(s)=((0.8350.550i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1455 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.835 - 0.550i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 14551455    =    35973 \cdot 5 \cdot 97
Sign: 0.8350.550i-0.835 - 0.550i
Analytic conductor: 6.756996.75699
Root analytic conductor: 6.756996.75699
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ1455(158,)\chi_{1455} (158, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 1455, (0: ), 0.8350.550i)(1,\ 1455,\ (0:\ ),\ -0.835 - 0.550i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.53809054721.794631738i0.5380905472 - 1.794631738i
L(12)L(\frac12) \approx 0.53809054721.794631738i0.5380905472 - 1.794631738i
L(1)L(1) \approx 1.2580730370.7632706124i1.258073037 - 0.7632706124i
L(1)L(1) \approx 1.2580730370.7632706124i1.258073037 - 0.7632706124i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
5 1 1
97 1 1
good2 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
7 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
11 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
13 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
17 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
19 1T 1 - T
23 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
29 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
31 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
37 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
41 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
43 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
47 1+iT 1 + iT
53 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
59 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
61 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
67 1iT 1 - iT
71 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
73 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
79 1T 1 - T
83 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
89 1+T 1 + T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−21.15118008028707649115690877812, −20.320636121241749524480890699371, −19.71710102864112248280373713085, −18.85283471239855547913223176696, −17.6778971592092250409252533878, −17.12910481529445568244612436648, −16.31820081981094542820392484791, −15.749491273900220135873081648468, −14.86445159174952450853818914643, −14.27018309296754812244534067603, −13.30347600763356347385753301595, −12.81241085707563821476361376772, −12.17161087693306573480186509374, −10.98881379646705375036718981305, −10.542162232710008643098845421633, −9.10379532825460957665212156948, −8.69265191940077030782902598395, −7.34272793219696082361611993400, −6.77007041668284652591850978917, −6.25777560041449916504737916329, −5.14554592590949956684364459505, −4.11207757655898962912372560905, −3.769136087323160002990982592443, −2.579160739411999704304299962787, −1.56743030889104601687067875313, 0.48977312717600109196193159733, 1.76999353103701326850076762639, 2.80727498653500068316007453639, 3.46694564607871680979365731263, 4.29476037928873399318971492160, 5.38244301368508398438399220539, 6.22221004547505511475018056961, 6.55172116537211606724889102114, 7.887498517842419239841765346475, 9.10289068658851419329495987967, 9.468473695037928209850124644049, 10.847083931336196345514260889712, 11.07155402957749084446080920579, 12.075027328441040265912487481103, 12.92521471388295582673186734176, 13.3786296551688509903018575954, 14.12253910888629406183264844038, 15.25170522241723952666929288712, 15.557785222015823929287237048774, 16.426494104466886314848711620373, 17.31723734969849080671804023915, 18.565398339123499317304991161591, 19.004349019984289904474714541301, 19.67114155130038157239792114304, 20.51804890640958928487221213259

Graph of the ZZ-function along the critical line