Properties

Label 1455.158
Modulus 14551455
Conductor 14551455
Order 1212
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1455, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([6,9,8]))
 
pari: [g,chi] = znchar(Mod(158,1455))
 

Basic properties

Modulus: 14551455
Conductor: 14551455
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1212
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1455.bq

χ1455(158,)\chi_{1455}(158,\cdot) χ1455(617,)\chi_{1455}(617,\cdot) χ1455(908,)\chi_{1455}(908,\cdot) χ1455(1322,)\chi_{1455}(1322,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: 12.12.11159158379493758923828125.1

Values on generators

(971,292,781)(971,292,781)(1,i,e(23))(-1,-i,e\left(\frac{2}{3}\right))

First values

aa 1-11122447788111113131414161617171919
χ1455(158,a) \chi_{ 1455 }(158, a) 1111e(1112)e\left(\frac{11}{12}\right)e(56)e\left(\frac{5}{6}\right)e(512)e\left(\frac{5}{12}\right)i-ie(56)e\left(\frac{5}{6}\right)e(1112)e\left(\frac{11}{12}\right)e(13)e\left(\frac{1}{3}\right)e(23)e\left(\frac{2}{3}\right)e(712)e\left(\frac{7}{12}\right)1-1
sage: chi.jacobi_sum(n)
 
χ1455(158,a)   \chi_{ 1455 }(158,a) \; at   a=\;a = e.g. 2