L(s) = 1 | + (−0.642 − 0.766i)3-s + (−0.342 + 0.939i)7-s + (−0.173 + 0.984i)9-s + (−0.5 + 0.866i)11-s + (−0.984 + 0.173i)13-s + (0.984 + 0.173i)17-s + (−0.766 + 0.642i)19-s + (0.939 − 0.342i)21-s + (0.866 − 0.5i)23-s + (0.866 − 0.5i)27-s + (−0.5 + 0.866i)29-s − 31-s + (0.984 − 0.173i)33-s + (0.766 + 0.642i)39-s + (0.173 + 0.984i)41-s + ⋯ |
L(s) = 1 | + (−0.642 − 0.766i)3-s + (−0.342 + 0.939i)7-s + (−0.173 + 0.984i)9-s + (−0.5 + 0.866i)11-s + (−0.984 + 0.173i)13-s + (0.984 + 0.173i)17-s + (−0.766 + 0.642i)19-s + (0.939 − 0.342i)21-s + (0.866 − 0.5i)23-s + (0.866 − 0.5i)27-s + (−0.5 + 0.866i)29-s − 31-s + (0.984 − 0.173i)33-s + (0.766 + 0.642i)39-s + (0.173 + 0.984i)41-s + ⋯ |
Λ(s)=(=(1480s/2ΓR(s)L(s)(−0.965−0.259i)Λ(1−s)
Λ(s)=(=(1480s/2ΓR(s)L(s)(−0.965−0.259i)Λ(1−s)
Degree: |
1 |
Conductor: |
1480
= 23⋅5⋅37
|
Sign: |
−0.965−0.259i
|
Analytic conductor: |
6.87309 |
Root analytic conductor: |
6.87309 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1480(867,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 1480, (0: ), −0.965−0.259i)
|
Particular Values
L(21) |
≈ |
0.001803346862+0.01367371111i |
L(21) |
≈ |
0.001803346862+0.01367371111i |
L(1) |
≈ |
0.6360809816+0.005869125246i |
L(1) |
≈ |
0.6360809816+0.005869125246i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 37 | 1 |
good | 3 | 1+(−0.642−0.766i)T |
| 7 | 1+(−0.342+0.939i)T |
| 11 | 1+(−0.5+0.866i)T |
| 13 | 1+(−0.984+0.173i)T |
| 17 | 1+(0.984+0.173i)T |
| 19 | 1+(−0.766+0.642i)T |
| 23 | 1+(0.866−0.5i)T |
| 29 | 1+(−0.5+0.866i)T |
| 31 | 1−T |
| 41 | 1+(0.173+0.984i)T |
| 43 | 1−iT |
| 47 | 1+(−0.866+0.5i)T |
| 53 | 1+(−0.342−0.939i)T |
| 59 | 1+(0.939−0.342i)T |
| 61 | 1+(−0.173−0.984i)T |
| 67 | 1+(0.342−0.939i)T |
| 71 | 1+(−0.766+0.642i)T |
| 73 | 1−iT |
| 79 | 1+(−0.939−0.342i)T |
| 83 | 1+(−0.984−0.173i)T |
| 89 | 1+(0.939−0.342i)T |
| 97 | 1+(0.866−0.5i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−20.38162228915549847982918294294, −19.49498054275428226974337150649, −18.86426631205967905372372776166, −17.74781646875963579175362924046, −17.0667914237049449639305655937, −16.60526717164078015749192338624, −15.89136523109394184977522051966, −15.00046024442155874694569421190, −14.3589735172663453675041645741, −13.30369696888448091397093575495, −12.696898996953361939704402931093, −11.620067121338353933493435532740, −10.99239860058851598773198203469, −10.270572156443632278151203192429, −9.66615024571286355119549474145, −8.792768743850055571400220191205, −7.6293132680899901456248481829, −6.963783504210203346528052965627, −5.89236438045596834065384875404, −5.24447801256319770276772698828, −4.348716891300456432244444044263, −3.51364221656086796865596528198, −2.7038277468114946176563016951, −1.02545171110361110188022981791, −0.0063704420964365463123180568,
1.636624486434251565045587561326, 2.28067769122951466579069607259, 3.29071949461946493183000930268, 4.77929747731488450062258956810, 5.30514770019903503866695576427, 6.17487961500400491135368922197, 7.00929369639632090356555053576, 7.69790714489716460830924391918, 8.57636680551127522440834284980, 9.60934563560129520640585560962, 10.33255054903430616042635659839, 11.2586380719088890362610553655, 12.15112865518868979914256266029, 12.67037256399706843298380434614, 13.026693700403614611588749558863, 14.55746285181581989640103220110, 14.7596468561677917000625706934, 15.9666210339699618821483068590, 16.67891394296011095169748258542, 17.31842477096708300928404011004, 18.20517608091882328355919780619, 18.76124738292038980642490743043, 19.29982044152223834533438499859, 20.22560405026550161174626605302, 21.20346471578492084966971855153