sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1480, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([18,18,9,4]))
pari:[g,chi] = znchar(Mod(867,1480))
Modulus: | 1480 | |
Conductor: | 1480 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 36 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ1480(83,⋅)
χ1480(107,⋅)
χ1480(123,⋅)
χ1480(403,⋅)
χ1480(747,⋅)
χ1480(867,⋅)
χ1480(1043,⋅)
χ1480(1107,⋅)
χ1480(1163,⋅)
χ1480(1267,⋅)
χ1480(1307,⋅)
χ1480(1403,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(1111,741,297,1001) → (−1,−1,i,e(91))
a |
−1 | 1 | 3 | 7 | 9 | 11 | 13 | 17 | 19 | 21 | 23 | 27 |
χ1480(867,a) |
1 | 1 | e(3623) | e(3611) | e(185) | e(31) | e(3617) | e(361) | e(187) | e(1817) | e(1211) | e(1211) |
sage:chi.jacobi_sum(n)