Properties

Label 1480.1043
Modulus 14801480
Conductor 14801480
Order 3636
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1480, base_ring=CyclotomicField(36))
 
M = H._module
 
chi = DirichletCharacter(H, M([18,18,27,32]))
 
pari: [g,chi] = znchar(Mod(1043,1480))
 

Basic properties

Modulus: 14801480
Conductor: 14801480
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 3636
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1480.dw

χ1480(83,)\chi_{1480}(83,\cdot) χ1480(107,)\chi_{1480}(107,\cdot) χ1480(123,)\chi_{1480}(123,\cdot) χ1480(403,)\chi_{1480}(403,\cdot) χ1480(747,)\chi_{1480}(747,\cdot) χ1480(867,)\chi_{1480}(867,\cdot) χ1480(1043,)\chi_{1480}(1043,\cdot) χ1480(1107,)\chi_{1480}(1107,\cdot) χ1480(1163,)\chi_{1480}(1163,\cdot) χ1480(1267,)\chi_{1480}(1267,\cdot) χ1480(1307,)\chi_{1480}(1307,\cdot) χ1480(1403,)\chi_{1480}(1403,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ36)\Q(\zeta_{36})
Fixed field: Number field defined by a degree 36 polynomial

Values on generators

(1111,741,297,1001)(1111,741,297,1001)(1,1,i,e(89))(-1,-1,-i,e\left(\frac{8}{9}\right))

First values

aa 1-1113377991111131317171919212123232727
χ1480(1043,a) \chi_{ 1480 }(1043, a) 1111e(1336)e\left(\frac{13}{36}\right)e(2536)e\left(\frac{25}{36}\right)e(1318)e\left(\frac{13}{18}\right)e(23)e\left(\frac{2}{3}\right)e(1936)e\left(\frac{19}{36}\right)e(3536)e\left(\frac{35}{36}\right)e(1118)e\left(\frac{11}{18}\right)e(118)e\left(\frac{1}{18}\right)e(112)e\left(\frac{1}{12}\right)e(112)e\left(\frac{1}{12}\right)
sage: chi.jacobi_sum(n)
 
χ1480(1043,a)   \chi_{ 1480 }(1043,a) \; at   a=\;a = e.g. 2