L(s) = 1 | + (−0.995 + 0.0950i)2-s + (−0.723 + 0.690i)3-s + (0.981 − 0.189i)4-s + (−0.888 − 0.458i)5-s + (0.654 − 0.755i)6-s + (−0.959 + 0.281i)8-s + (0.0475 − 0.998i)9-s + (0.928 + 0.371i)10-s + (0.995 + 0.0950i)11-s + (−0.580 + 0.814i)12-s + (0.142 + 0.989i)13-s + (0.959 − 0.281i)15-s + (0.928 − 0.371i)16-s + (−0.327 − 0.945i)17-s + (0.0475 + 0.998i)18-s + (−0.327 + 0.945i)19-s + ⋯ |
L(s) = 1 | + (−0.995 + 0.0950i)2-s + (−0.723 + 0.690i)3-s + (0.981 − 0.189i)4-s + (−0.888 − 0.458i)5-s + (0.654 − 0.755i)6-s + (−0.959 + 0.281i)8-s + (0.0475 − 0.998i)9-s + (0.928 + 0.371i)10-s + (0.995 + 0.0950i)11-s + (−0.580 + 0.814i)12-s + (0.142 + 0.989i)13-s + (0.959 − 0.281i)15-s + (0.928 − 0.371i)16-s + (−0.327 − 0.945i)17-s + (0.0475 + 0.998i)18-s + (−0.327 + 0.945i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.0815 + 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.0815 + 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2745789834 + 0.2979490508i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2745789834 + 0.2979490508i\) |
\(L(1)\) |
\(\approx\) |
\(0.4576732473 + 0.1538113325i\) |
\(L(1)\) |
\(\approx\) |
\(0.4576732473 + 0.1538113325i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 23 | \( 1 \) |
good | 2 | \( 1 + (-0.995 + 0.0950i)T \) |
| 3 | \( 1 + (-0.723 + 0.690i)T \) |
| 5 | \( 1 + (-0.888 - 0.458i)T \) |
| 11 | \( 1 + (0.995 + 0.0950i)T \) |
| 13 | \( 1 + (0.142 + 0.989i)T \) |
| 17 | \( 1 + (-0.327 - 0.945i)T \) |
| 19 | \( 1 + (-0.327 + 0.945i)T \) |
| 29 | \( 1 + (-0.654 + 0.755i)T \) |
| 31 | \( 1 + (-0.235 + 0.971i)T \) |
| 37 | \( 1 + (-0.0475 + 0.998i)T \) |
| 41 | \( 1 + (-0.841 + 0.540i)T \) |
| 43 | \( 1 + (0.959 + 0.281i)T \) |
| 47 | \( 1 + (0.5 + 0.866i)T \) |
| 53 | \( 1 + (0.786 + 0.618i)T \) |
| 59 | \( 1 + (-0.928 - 0.371i)T \) |
| 61 | \( 1 + (0.723 + 0.690i)T \) |
| 67 | \( 1 + (-0.580 - 0.814i)T \) |
| 71 | \( 1 + (0.415 - 0.909i)T \) |
| 73 | \( 1 + (-0.981 + 0.189i)T \) |
| 79 | \( 1 + (0.786 - 0.618i)T \) |
| 83 | \( 1 + (0.841 + 0.540i)T \) |
| 89 | \( 1 + (0.235 + 0.971i)T \) |
| 97 | \( 1 + (0.841 - 0.540i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−27.864120602426276807093420431522, −26.73585902688445034197569899413, −25.68331170343755101187270388644, −24.59547104004471871981254053474, −23.87505569596736260040910942258, −22.704294299046509847507936389795, −21.83618638678019752512889966901, −20.1663850444177844576333128171, −19.42438349781860246362202282061, −18.71397958824536079592023446330, −17.61568791292068856755235982967, −16.97797981828760725060457579859, −15.75822022662905136070583386375, −14.866470801228553247968362679346, −13.06152906309910498938665463211, −11.99489256147380427706327247280, −11.19890151953836363599045067867, −10.43269245444688163012399868191, −8.790461475861589150933148605901, −7.747360178237771600154151434050, −6.881986890401253904767311830, −5.876444277551218470162165659662, −3.84916409392407975166180265114, −2.22421344364273220874776297593, −0.574130428886037437041555104960,
1.3059212892926127713960163271, 3.537385353684328299179232018078, 4.755588230732013759871360176714, 6.273168037022245064345361881, 7.272156451621687440186051737088, 8.77332321543281809003490627474, 9.42037058013615129916636313000, 10.751827993359150168927560318750, 11.66626483158079225778910493501, 12.24671865631844776178419124038, 14.452505869202351627903703824907, 15.482067934236538200663945266362, 16.46444240305240108670531414099, 16.81103308944456214248133128628, 18.10867623238777158000600578319, 19.12433733595367986098330887133, 20.18045110167918685414797864570, 20.94257562017645089675524405120, 22.191450919662980655268933339751, 23.34683356533391496730468713135, 24.16083151894981002190208681085, 25.25010243918114754501347311086, 26.510928831918552504449354551101, 27.31027323535749743713481143988, 27.74036434296809182382614594429