L(s) = 1 | + (−0.995 − 0.0950i)2-s + (−0.723 − 0.690i)3-s + (0.981 + 0.189i)4-s + (−0.888 + 0.458i)5-s + (0.654 + 0.755i)6-s + (−0.959 − 0.281i)8-s + (0.0475 + 0.998i)9-s + (0.928 − 0.371i)10-s + (0.995 − 0.0950i)11-s + (−0.580 − 0.814i)12-s + (0.142 − 0.989i)13-s + (0.959 + 0.281i)15-s + (0.928 + 0.371i)16-s + (−0.327 + 0.945i)17-s + (0.0475 − 0.998i)18-s + (−0.327 − 0.945i)19-s + ⋯ |
L(s) = 1 | + (−0.995 − 0.0950i)2-s + (−0.723 − 0.690i)3-s + (0.981 + 0.189i)4-s + (−0.888 + 0.458i)5-s + (0.654 + 0.755i)6-s + (−0.959 − 0.281i)8-s + (0.0475 + 0.998i)9-s + (0.928 − 0.371i)10-s + (0.995 − 0.0950i)11-s + (−0.580 − 0.814i)12-s + (0.142 − 0.989i)13-s + (0.959 + 0.281i)15-s + (0.928 + 0.371i)16-s + (−0.327 + 0.945i)17-s + (0.0475 − 0.998i)18-s + (−0.327 − 0.945i)19-s + ⋯ |
Λ(s)=(=(161s/2ΓR(s)L(s)(−0.0815−0.996i)Λ(1−s)
Λ(s)=(=(161s/2ΓR(s)L(s)(−0.0815−0.996i)Λ(1−s)
Degree: |
1 |
Conductor: |
161
= 7⋅23
|
Sign: |
−0.0815−0.996i
|
Analytic conductor: |
0.747680 |
Root analytic conductor: |
0.747680 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ161(136,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 161, (0: ), −0.0815−0.996i)
|
Particular Values
L(21) |
≈ |
0.2745789834−0.2979490508i |
L(21) |
≈ |
0.2745789834−0.2979490508i |
L(1) |
≈ |
0.4576732473−0.1538113325i |
L(1) |
≈ |
0.4576732473−0.1538113325i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 23 | 1 |
good | 2 | 1+(−0.995−0.0950i)T |
| 3 | 1+(−0.723−0.690i)T |
| 5 | 1+(−0.888+0.458i)T |
| 11 | 1+(0.995−0.0950i)T |
| 13 | 1+(0.142−0.989i)T |
| 17 | 1+(−0.327+0.945i)T |
| 19 | 1+(−0.327−0.945i)T |
| 29 | 1+(−0.654−0.755i)T |
| 31 | 1+(−0.235−0.971i)T |
| 37 | 1+(−0.0475−0.998i)T |
| 41 | 1+(−0.841−0.540i)T |
| 43 | 1+(0.959−0.281i)T |
| 47 | 1+(0.5−0.866i)T |
| 53 | 1+(0.786−0.618i)T |
| 59 | 1+(−0.928+0.371i)T |
| 61 | 1+(0.723−0.690i)T |
| 67 | 1+(−0.580+0.814i)T |
| 71 | 1+(0.415+0.909i)T |
| 73 | 1+(−0.981−0.189i)T |
| 79 | 1+(0.786+0.618i)T |
| 83 | 1+(0.841−0.540i)T |
| 89 | 1+(0.235−0.971i)T |
| 97 | 1+(0.841+0.540i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−27.74036434296809182382614594429, −27.31027323535749743713481143988, −26.510928831918552504449354551101, −25.25010243918114754501347311086, −24.16083151894981002190208681085, −23.34683356533391496730468713135, −22.191450919662980655268933339751, −20.94257562017645089675524405120, −20.18045110167918685414797864570, −19.12433733595367986098330887133, −18.10867623238777158000600578319, −16.81103308944456214248133128628, −16.46444240305240108670531414099, −15.482067934236538200663945266362, −14.452505869202351627903703824907, −12.24671865631844776178419124038, −11.66626483158079225778910493501, −10.751827993359150168927560318750, −9.42037058013615129916636313000, −8.77332321543281809003490627474, −7.272156451621687440186051737088, −6.273168037022245064345361881, −4.755588230732013759871360176714, −3.537385353684328299179232018078, −1.3059212892926127713960163271,
0.574130428886037437041555104960, 2.22421344364273220874776297593, 3.84916409392407975166180265114, 5.876444277551218470162165659662, 6.881986890401253904767311830, 7.747360178237771600154151434050, 8.790461475861589150933148605901, 10.43269245444688163012399868191, 11.19890151953836363599045067867, 11.99489256147380427706327247280, 13.06152906309910498938665463211, 14.866470801228553247968362679346, 15.75822022662905136070583386375, 16.97797981828760725060457579859, 17.61568791292068856755235982967, 18.71397958824536079592023446330, 19.42438349781860246362202282061, 20.1663850444177844576333128171, 21.83618638678019752512889966901, 22.704294299046509847507936389795, 23.87505569596736260040910942258, 24.59547104004471871981254053474, 25.68331170343755101187270388644, 26.73585902688445034197569899413, 27.864120602426276807093420431522