Properties

Label 1-161-161.149-r1-0-0
Degree 11
Conductor 161161
Sign 0.7140.700i0.714 - 0.700i
Analytic cond. 17.301817.3018
Root an. cond. 17.301817.3018
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.995 + 0.0950i)2-s + (0.723 − 0.690i)3-s + (0.981 − 0.189i)4-s + (0.888 + 0.458i)5-s + (−0.654 + 0.755i)6-s + (−0.959 + 0.281i)8-s + (0.0475 − 0.998i)9-s + (−0.928 − 0.371i)10-s + (0.995 + 0.0950i)11-s + (0.580 − 0.814i)12-s + (−0.142 − 0.989i)13-s + (0.959 − 0.281i)15-s + (0.928 − 0.371i)16-s + (0.327 + 0.945i)17-s + (0.0475 + 0.998i)18-s + (0.327 − 0.945i)19-s + ⋯
L(s)  = 1  + (−0.995 + 0.0950i)2-s + (0.723 − 0.690i)3-s + (0.981 − 0.189i)4-s + (0.888 + 0.458i)5-s + (−0.654 + 0.755i)6-s + (−0.959 + 0.281i)8-s + (0.0475 − 0.998i)9-s + (−0.928 − 0.371i)10-s + (0.995 + 0.0950i)11-s + (0.580 − 0.814i)12-s + (−0.142 − 0.989i)13-s + (0.959 − 0.281i)15-s + (0.928 − 0.371i)16-s + (0.327 + 0.945i)17-s + (0.0475 + 0.998i)18-s + (0.327 − 0.945i)19-s + ⋯

Functional equation

Λ(s)=(161s/2ΓR(s+1)L(s)=((0.7140.700i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.714 - 0.700i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(161s/2ΓR(s+1)L(s)=((0.7140.700i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.714 - 0.700i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 161161    =    7237 \cdot 23
Sign: 0.7140.700i0.714 - 0.700i
Analytic conductor: 17.301817.3018
Root analytic conductor: 17.301817.3018
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ161(149,)\chi_{161} (149, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 161, (1: ), 0.7140.700i)(1,\ 161,\ (1:\ ),\ 0.714 - 0.700i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.7574345180.7177625577i1.757434518 - 0.7177625577i
L(12)L(\frac12) \approx 1.7574345180.7177625577i1.757434518 - 0.7177625577i
L(1)L(1) \approx 1.1270564230.2355427061i1.127056423 - 0.2355427061i
L(1)L(1) \approx 1.1270564230.2355427061i1.127056423 - 0.2355427061i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad7 1 1
23 1 1
good2 1+(0.995+0.0950i)T 1 + (-0.995 + 0.0950i)T
3 1+(0.7230.690i)T 1 + (0.723 - 0.690i)T
5 1+(0.888+0.458i)T 1 + (0.888 + 0.458i)T
11 1+(0.995+0.0950i)T 1 + (0.995 + 0.0950i)T
13 1+(0.1420.989i)T 1 + (-0.142 - 0.989i)T
17 1+(0.327+0.945i)T 1 + (0.327 + 0.945i)T
19 1+(0.3270.945i)T 1 + (0.327 - 0.945i)T
29 1+(0.654+0.755i)T 1 + (-0.654 + 0.755i)T
31 1+(0.2350.971i)T 1 + (0.235 - 0.971i)T
37 1+(0.0475+0.998i)T 1 + (-0.0475 + 0.998i)T
41 1+(0.8410.540i)T 1 + (0.841 - 0.540i)T
43 1+(0.959+0.281i)T 1 + (0.959 + 0.281i)T
47 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
53 1+(0.786+0.618i)T 1 + (0.786 + 0.618i)T
59 1+(0.928+0.371i)T 1 + (0.928 + 0.371i)T
61 1+(0.7230.690i)T 1 + (-0.723 - 0.690i)T
67 1+(0.5800.814i)T 1 + (-0.580 - 0.814i)T
71 1+(0.4150.909i)T 1 + (0.415 - 0.909i)T
73 1+(0.9810.189i)T 1 + (0.981 - 0.189i)T
79 1+(0.7860.618i)T 1 + (0.786 - 0.618i)T
83 1+(0.8410.540i)T 1 + (-0.841 - 0.540i)T
89 1+(0.2350.971i)T 1 + (-0.235 - 0.971i)T
97 1+(0.841+0.540i)T 1 + (-0.841 + 0.540i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−27.521938007656970124525696873535, −26.75013283550055487776321703522, −25.82289495022643093181327949623, −24.97456355193785833411942111602, −24.45716768195814586789806513594, −22.48266787788252809287103326414, −21.287564012939897789243656375700, −20.86035400051187289923943489927, −19.78810324889828231754490081965, −18.94256138332123131616467356664, −17.72027198333294801307486656120, −16.59587568657614306243658725701, −16.172769805368290176325595837167, −14.61611529206196436541594059959, −13.89712273432921729989197174623, −12.30343259010455985401131428010, −11.10388948481505578685578134813, −9.72419347646108267954843841633, −9.40860510255548478016675150683, −8.3932490716367804485488112192, −7.05521847670317042362541526933, −5.65576012010816774821374044279, −4.03033751933920793132153489921, −2.52805097567221832350602757038, −1.36656509777211546382245901035, 1.022724865052365175499209746424, 2.168696010633057559266635771072, 3.3036639313328352683457678366, 5.83111366917314248349978704348, 6.75396174076108712128364613881, 7.7431104200776225051474999365, 8.93523661603215974785717338302, 9.7151340561906281669568438013, 10.869265641848023356233524888276, 12.21873573962539904512370711438, 13.36924100184878939747181216737, 14.60561772804464329758137162537, 15.23116783665997508594141398298, 16.96221958906494125431958757265, 17.657800719812890051918830626408, 18.48450531828723121431343208540, 19.47658556696876849210133028029, 20.21346949765964965434339716105, 21.28290718306835557821687547898, 22.50214164371627480828097152519, 24.109776820017328927439818256339, 24.75181139875802102650959525829, 25.72726235439202299058042104955, 26.09595977676386945739316381304, 27.34023161617452370741752979711

Graph of the ZZ-function along the critical line