L(s) = 1 | + (−0.995 + 0.0950i)2-s + (0.723 − 0.690i)3-s + (0.981 − 0.189i)4-s + (0.888 + 0.458i)5-s + (−0.654 + 0.755i)6-s + (−0.959 + 0.281i)8-s + (0.0475 − 0.998i)9-s + (−0.928 − 0.371i)10-s + (0.995 + 0.0950i)11-s + (0.580 − 0.814i)12-s + (−0.142 − 0.989i)13-s + (0.959 − 0.281i)15-s + (0.928 − 0.371i)16-s + (0.327 + 0.945i)17-s + (0.0475 + 0.998i)18-s + (0.327 − 0.945i)19-s + ⋯ |
L(s) = 1 | + (−0.995 + 0.0950i)2-s + (0.723 − 0.690i)3-s + (0.981 − 0.189i)4-s + (0.888 + 0.458i)5-s + (−0.654 + 0.755i)6-s + (−0.959 + 0.281i)8-s + (0.0475 − 0.998i)9-s + (−0.928 − 0.371i)10-s + (0.995 + 0.0950i)11-s + (0.580 − 0.814i)12-s + (−0.142 − 0.989i)13-s + (0.959 − 0.281i)15-s + (0.928 − 0.371i)16-s + (0.327 + 0.945i)17-s + (0.0475 + 0.998i)18-s + (0.327 − 0.945i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.714 - 0.700i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.714 - 0.700i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.757434518 - 0.7177625577i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.757434518 - 0.7177625577i\) |
\(L(1)\) |
\(\approx\) |
\(1.127056423 - 0.2355427061i\) |
\(L(1)\) |
\(\approx\) |
\(1.127056423 - 0.2355427061i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 23 | \( 1 \) |
good | 2 | \( 1 + (-0.995 + 0.0950i)T \) |
| 3 | \( 1 + (0.723 - 0.690i)T \) |
| 5 | \( 1 + (0.888 + 0.458i)T \) |
| 11 | \( 1 + (0.995 + 0.0950i)T \) |
| 13 | \( 1 + (-0.142 - 0.989i)T \) |
| 17 | \( 1 + (0.327 + 0.945i)T \) |
| 19 | \( 1 + (0.327 - 0.945i)T \) |
| 29 | \( 1 + (-0.654 + 0.755i)T \) |
| 31 | \( 1 + (0.235 - 0.971i)T \) |
| 37 | \( 1 + (-0.0475 + 0.998i)T \) |
| 41 | \( 1 + (0.841 - 0.540i)T \) |
| 43 | \( 1 + (0.959 + 0.281i)T \) |
| 47 | \( 1 + (-0.5 - 0.866i)T \) |
| 53 | \( 1 + (0.786 + 0.618i)T \) |
| 59 | \( 1 + (0.928 + 0.371i)T \) |
| 61 | \( 1 + (-0.723 - 0.690i)T \) |
| 67 | \( 1 + (-0.580 - 0.814i)T \) |
| 71 | \( 1 + (0.415 - 0.909i)T \) |
| 73 | \( 1 + (0.981 - 0.189i)T \) |
| 79 | \( 1 + (0.786 - 0.618i)T \) |
| 83 | \( 1 + (-0.841 - 0.540i)T \) |
| 89 | \( 1 + (-0.235 - 0.971i)T \) |
| 97 | \( 1 + (-0.841 + 0.540i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−27.521938007656970124525696873535, −26.75013283550055487776321703522, −25.82289495022643093181327949623, −24.97456355193785833411942111602, −24.45716768195814586789806513594, −22.48266787788252809287103326414, −21.287564012939897789243656375700, −20.86035400051187289923943489927, −19.78810324889828231754490081965, −18.94256138332123131616467356664, −17.72027198333294801307486656120, −16.59587568657614306243658725701, −16.172769805368290176325595837167, −14.61611529206196436541594059959, −13.89712273432921729989197174623, −12.30343259010455985401131428010, −11.10388948481505578685578134813, −9.72419347646108267954843841633, −9.40860510255548478016675150683, −8.3932490716367804485488112192, −7.05521847670317042362541526933, −5.65576012010816774821374044279, −4.03033751933920793132153489921, −2.52805097567221832350602757038, −1.36656509777211546382245901035,
1.022724865052365175499209746424, 2.168696010633057559266635771072, 3.3036639313328352683457678366, 5.83111366917314248349978704348, 6.75396174076108712128364613881, 7.7431104200776225051474999365, 8.93523661603215974785717338302, 9.7151340561906281669568438013, 10.869265641848023356233524888276, 12.21873573962539904512370711438, 13.36924100184878939747181216737, 14.60561772804464329758137162537, 15.23116783665997508594141398298, 16.96221958906494125431958757265, 17.657800719812890051918830626408, 18.48450531828723121431343208540, 19.47658556696876849210133028029, 20.21346949765964965434339716105, 21.28290718306835557821687547898, 22.50214164371627480828097152519, 24.109776820017328927439818256339, 24.75181139875802102650959525829, 25.72726235439202299058042104955, 26.09595977676386945739316381304, 27.34023161617452370741752979711