Properties

Label 161.149
Modulus 161161
Conductor 161161
Order 6666
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(161, base_ring=CyclotomicField(66))
 
M = H._module
 
chi = DirichletCharacter(H, M([22,27]))
 
pari: [g,chi] = znchar(Mod(149,161))
 

Basic properties

Modulus: 161161
Conductor: 161161
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 6666
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 161.p

χ161(11,)\chi_{161}(11,\cdot) χ161(30,)\chi_{161}(30,\cdot) χ161(37,)\chi_{161}(37,\cdot) χ161(44,)\chi_{161}(44,\cdot) χ161(51,)\chi_{161}(51,\cdot) χ161(53,)\chi_{161}(53,\cdot) χ161(60,)\chi_{161}(60,\cdot) χ161(65,)\chi_{161}(65,\cdot) χ161(67,)\chi_{161}(67,\cdot) χ161(74,)\chi_{161}(74,\cdot) χ161(79,)\chi_{161}(79,\cdot) χ161(86,)\chi_{161}(86,\cdot) χ161(88,)\chi_{161}(88,\cdot) χ161(102,)\chi_{161}(102,\cdot) χ161(107,)\chi_{161}(107,\cdot) χ161(109,)\chi_{161}(109,\cdot) χ161(130,)\chi_{161}(130,\cdot) χ161(135,)\chi_{161}(135,\cdot) χ161(149,)\chi_{161}(149,\cdot) χ161(158,)\chi_{161}(158,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ33)\Q(\zeta_{33})
Fixed field: Number field defined by a degree 66 polynomial

Values on generators

(24,120)(24,120)(e(13),e(922))(e\left(\frac{1}{3}\right),e\left(\frac{9}{22}\right))

First values

aa 1-11122334455668899101011111212
χ161(149,a) \chi_{ 161 }(149, a) 1-111e(1633)e\left(\frac{16}{33}\right)e(2933)e\left(\frac{29}{33}\right)e(3233)e\left(\frac{32}{33}\right)e(566)e\left(\frac{5}{66}\right)e(411)e\left(\frac{4}{11}\right)e(511)e\left(\frac{5}{11}\right)e(2533)e\left(\frac{25}{33}\right)e(3766)e\left(\frac{37}{66}\right)e(166)e\left(\frac{1}{66}\right)e(2833)e\left(\frac{28}{33}\right)
sage: chi.jacobi_sum(n)
 
χ161(149,a)   \chi_{ 161 }(149,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ161(149,))   \tau_{ a }( \chi_{ 161 }(149,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ161(149,),χ161(n,))   J(\chi_{ 161 }(149,·),\chi_{ 161 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ161(149,))  K(a,b,\chi_{ 161 }(149,·)) \; at   a,b=\; a,b = e.g. 1,2