L(s) = 1 | + (−0.587 + 0.809i)2-s + (−0.309 − 0.951i)4-s + (−0.951 + 0.309i)7-s + (0.951 + 0.309i)8-s + (−0.587 + 0.809i)13-s + (0.309 − 0.951i)14-s + (−0.809 + 0.587i)16-s + (0.587 + 0.809i)17-s + (0.309 − 0.951i)19-s − i·23-s + (−0.309 − 0.951i)26-s + (0.587 + 0.809i)28-s + (−0.309 − 0.951i)29-s + (−0.809 − 0.587i)31-s − i·32-s + ⋯ |
L(s) = 1 | + (−0.587 + 0.809i)2-s + (−0.309 − 0.951i)4-s + (−0.951 + 0.309i)7-s + (0.951 + 0.309i)8-s + (−0.587 + 0.809i)13-s + (0.309 − 0.951i)14-s + (−0.809 + 0.587i)16-s + (0.587 + 0.809i)17-s + (0.309 − 0.951i)19-s − i·23-s + (−0.309 − 0.951i)26-s + (0.587 + 0.809i)28-s + (−0.309 − 0.951i)29-s + (−0.809 − 0.587i)31-s − i·32-s + ⋯ |
Λ(s)=(=(165s/2ΓR(s+1)L(s)(0.838−0.544i)Λ(1−s)
Λ(s)=(=(165s/2ΓR(s+1)L(s)(0.838−0.544i)Λ(1−s)
Degree: |
1 |
Conductor: |
165
= 3⋅5⋅11
|
Sign: |
0.838−0.544i
|
Analytic conductor: |
17.7317 |
Root analytic conductor: |
17.7317 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ165(68,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 165, (1: ), 0.838−0.544i)
|
Particular Values
L(21) |
≈ |
0.7127865245−0.2109824760i |
L(21) |
≈ |
0.7127865245−0.2109824760i |
L(1) |
≈ |
0.6498590771+0.1468917656i |
L(1) |
≈ |
0.6498590771+0.1468917656i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
| 11 | 1 |
good | 2 | 1+(−0.587+0.809i)T |
| 7 | 1+(−0.951+0.309i)T |
| 13 | 1+(−0.587+0.809i)T |
| 17 | 1+(0.587+0.809i)T |
| 19 | 1+(0.309−0.951i)T |
| 23 | 1−iT |
| 29 | 1+(−0.309−0.951i)T |
| 31 | 1+(−0.809−0.587i)T |
| 37 | 1+(0.951−0.309i)T |
| 41 | 1+(0.309−0.951i)T |
| 43 | 1−iT |
| 47 | 1+(0.951+0.309i)T |
| 53 | 1+(−0.587+0.809i)T |
| 59 | 1+(0.309+0.951i)T |
| 61 | 1+(0.809−0.587i)T |
| 67 | 1−iT |
| 71 | 1+(0.809−0.587i)T |
| 73 | 1+(0.951−0.309i)T |
| 79 | 1+(−0.809−0.587i)T |
| 83 | 1+(−0.587−0.809i)T |
| 89 | 1+T |
| 97 | 1+(−0.587+0.809i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−27.43202778414766490256324558145, −26.87906196068580598903282059539, −25.64084313829831733542221281135, −25.0883324847838511478020936581, −23.353846771337031796386979111862, −22.51388815530918362428863868330, −21.64709164968030045410928531673, −20.40351107129750362425644211370, −19.79962895063423467214463531540, −18.77730537596653034945221327482, −17.87479166047557376553035493981, −16.72548258064273201452914694102, −15.99731488141083273544128505312, −14.377566876412873025381348118947, −13.11983132298753670912823680904, −12.40427892307716538815609106675, −11.234987241741232869703199457900, −10.01282952019189713108914021186, −9.4855113282027853977976398903, −7.99703219464261568062458298772, −7.06420849072086496089830128687, −5.35860340495738219440883803995, −3.70712377628485090496546928329, −2.81326292306999618145269570557, −1.08155213212734894260125585710,
0.39539307619383528883880733466, 2.29015795555943526718631819725, 4.15987249653664420198910714200, 5.608483485119631978868834143633, 6.583937787320069283993438467244, 7.60102418460610700456402345381, 8.95971988355540688201347867172, 9.6638900837309023329763510729, 10.821511857663027468099770362205, 12.29905322495025329347283579884, 13.492096763623534566197727525008, 14.623886857076006901314450995919, 15.548511631580486560090807718280, 16.54012551885048951817141345757, 17.25470822474862196224986873040, 18.61590647942497686363562123903, 19.18890422774800247340081224250, 20.199512972717190220611676637991, 21.77535622385797781785350945863, 22.62747076781672553961963800606, 23.74131841029202094433648462129, 24.50846190509447371690276027275, 25.6361334917273038669072357714, 26.22268118270117820576856725748, 27.14864905656271463849288917210