L(s) = 1 | + (−0.587 + 0.809i)2-s + (−0.309 − 0.951i)4-s + (−0.951 + 0.309i)7-s + (0.951 + 0.309i)8-s + (−0.587 + 0.809i)13-s + (0.309 − 0.951i)14-s + (−0.809 + 0.587i)16-s + (0.587 + 0.809i)17-s + (0.309 − 0.951i)19-s − i·23-s + (−0.309 − 0.951i)26-s + (0.587 + 0.809i)28-s + (−0.309 − 0.951i)29-s + (−0.809 − 0.587i)31-s − i·32-s + ⋯ |
L(s) = 1 | + (−0.587 + 0.809i)2-s + (−0.309 − 0.951i)4-s + (−0.951 + 0.309i)7-s + (0.951 + 0.309i)8-s + (−0.587 + 0.809i)13-s + (0.309 − 0.951i)14-s + (−0.809 + 0.587i)16-s + (0.587 + 0.809i)17-s + (0.309 − 0.951i)19-s − i·23-s + (−0.309 − 0.951i)26-s + (0.587 + 0.809i)28-s + (−0.309 − 0.951i)29-s + (−0.809 − 0.587i)31-s − i·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 165 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.838 - 0.544i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 165 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.838 - 0.544i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7127865245 - 0.2109824760i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7127865245 - 0.2109824760i\) |
\(L(1)\) |
\(\approx\) |
\(0.6498590771 + 0.1468917656i\) |
\(L(1)\) |
\(\approx\) |
\(0.6498590771 + 0.1468917656i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.587 + 0.809i)T \) |
| 7 | \( 1 + (-0.951 + 0.309i)T \) |
| 13 | \( 1 + (-0.587 + 0.809i)T \) |
| 17 | \( 1 + (0.587 + 0.809i)T \) |
| 19 | \( 1 + (0.309 - 0.951i)T \) |
| 23 | \( 1 - iT \) |
| 29 | \( 1 + (-0.309 - 0.951i)T \) |
| 31 | \( 1 + (-0.809 - 0.587i)T \) |
| 37 | \( 1 + (0.951 - 0.309i)T \) |
| 41 | \( 1 + (0.309 - 0.951i)T \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 + (0.951 + 0.309i)T \) |
| 53 | \( 1 + (-0.587 + 0.809i)T \) |
| 59 | \( 1 + (0.309 + 0.951i)T \) |
| 61 | \( 1 + (0.809 - 0.587i)T \) |
| 67 | \( 1 - iT \) |
| 71 | \( 1 + (0.809 - 0.587i)T \) |
| 73 | \( 1 + (0.951 - 0.309i)T \) |
| 79 | \( 1 + (-0.809 - 0.587i)T \) |
| 83 | \( 1 + (-0.587 - 0.809i)T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 + (-0.587 + 0.809i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−27.43202778414766490256324558145, −26.87906196068580598903282059539, −25.64084313829831733542221281135, −25.0883324847838511478020936581, −23.353846771337031796386979111862, −22.51388815530918362428863868330, −21.64709164968030045410928531673, −20.40351107129750362425644211370, −19.79962895063423467214463531540, −18.77730537596653034945221327482, −17.87479166047557376553035493981, −16.72548258064273201452914694102, −15.99731488141083273544128505312, −14.377566876412873025381348118947, −13.11983132298753670912823680904, −12.40427892307716538815609106675, −11.234987241741232869703199457900, −10.01282952019189713108914021186, −9.4855113282027853977976398903, −7.99703219464261568062458298772, −7.06420849072086496089830128687, −5.35860340495738219440883803995, −3.70712377628485090496546928329, −2.81326292306999618145269570557, −1.08155213212734894260125585710,
0.39539307619383528883880733466, 2.29015795555943526718631819725, 4.15987249653664420198910714200, 5.608483485119631978868834143633, 6.583937787320069283993438467244, 7.60102418460610700456402345381, 8.95971988355540688201347867172, 9.6638900837309023329763510729, 10.821511857663027468099770362205, 12.29905322495025329347283579884, 13.492096763623534566197727525008, 14.623886857076006901314450995919, 15.548511631580486560090807718280, 16.54012551885048951817141345757, 17.25470822474862196224986873040, 18.61590647942497686363562123903, 19.18890422774800247340081224250, 20.199512972717190220611676637991, 21.77535622385797781785350945863, 22.62747076781672553961963800606, 23.74131841029202094433648462129, 24.50846190509447371690276027275, 25.6361334917273038669072357714, 26.22268118270117820576856725748, 27.14864905656271463849288917210