Properties

Label 165.68
Modulus 165165
Conductor 165165
Order 2020
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(165, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([10,15,2]))
 
pari: [g,chi] = znchar(Mod(68,165))
 

Basic properties

Modulus: 165165
Conductor: 165165
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 2020
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 165.u

χ165(2,)\chi_{165}(2,\cdot) χ165(8,)\chi_{165}(8,\cdot) χ165(17,)\chi_{165}(17,\cdot) χ165(62,)\chi_{165}(62,\cdot) χ165(68,)\chi_{165}(68,\cdot) χ165(83,)\chi_{165}(83,\cdot) χ165(107,)\chi_{165}(107,\cdot) χ165(128,)\chi_{165}(128,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ20)\Q(\zeta_{20})
Fixed field: Number field defined by a degree 20 polynomial

Values on generators

(56,67,46)(56,67,46)(1,i,e(110))(-1,-i,e\left(\frac{1}{10}\right))

First values

aa 1-11122447788131314141616171719192323
χ165(68,a) \chi_{ 165 }(68, a) 1-111e(720)e\left(\frac{7}{20}\right)e(710)e\left(\frac{7}{10}\right)e(920)e\left(\frac{9}{20}\right)e(120)e\left(\frac{1}{20}\right)e(720)e\left(\frac{7}{20}\right)e(45)e\left(\frac{4}{5}\right)e(25)e\left(\frac{2}{5}\right)e(320)e\left(\frac{3}{20}\right)e(45)e\left(\frac{4}{5}\right)i-i
sage: chi.jacobi_sum(n)
 
χ165(68,a)   \chi_{ 165 }(68,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ165(68,))   \tau_{ a }( \chi_{ 165 }(68,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ165(68,),χ165(n,))   J(\chi_{ 165 }(68,·),\chi_{ 165 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ165(68,))  K(a,b,\chi_{ 165 }(68,·)) \; at   a,b=\; a,b = e.g. 1,2