sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(165, base_ring=CyclotomicField(20))
M = H._module
chi = DirichletCharacter(H, M([10,15,2]))
pari:[g,chi] = znchar(Mod(68,165))
Modulus: | 165 | |
Conductor: | 165 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 20 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ165(2,⋅)
χ165(8,⋅)
χ165(17,⋅)
χ165(62,⋅)
χ165(68,⋅)
χ165(83,⋅)
χ165(107,⋅)
χ165(128,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(56,67,46) → (−1,−i,e(101))
a |
−1 | 1 | 2 | 4 | 7 | 8 | 13 | 14 | 16 | 17 | 19 | 23 |
χ165(68,a) |
−1 | 1 | e(207) | e(107) | e(209) | e(201) | e(207) | e(54) | e(52) | e(203) | e(54) | −i |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)