Properties

Label 1-17-17.8-r0-0-0
Degree 11
Conductor 1717
Sign 0.07580.997i0.0758 - 0.997i
Analytic cond. 0.07894760.0789476
Root an. cond. 0.07894760.0789476
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s + (−0.707 − 0.707i)3-s − 4-s + (0.707 + 0.707i)5-s + (−0.707 + 0.707i)6-s + (0.707 − 0.707i)7-s + i·8-s + i·9-s + (0.707 − 0.707i)10-s + (−0.707 + 0.707i)11-s + (0.707 + 0.707i)12-s − 13-s + (−0.707 − 0.707i)14-s i·15-s + 16-s + ⋯
L(s)  = 1  i·2-s + (−0.707 − 0.707i)3-s − 4-s + (0.707 + 0.707i)5-s + (−0.707 + 0.707i)6-s + (0.707 − 0.707i)7-s + i·8-s + i·9-s + (0.707 − 0.707i)10-s + (−0.707 + 0.707i)11-s + (0.707 + 0.707i)12-s − 13-s + (−0.707 − 0.707i)14-s i·15-s + 16-s + ⋯

Functional equation

Λ(s)=(17s/2ΓR(s)L(s)=((0.07580.997i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 17 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0758 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(17s/2ΓR(s)L(s)=((0.07580.997i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 17 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0758 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 1717
Sign: 0.07580.997i0.0758 - 0.997i
Analytic conductor: 0.07894760.0789476
Root analytic conductor: 0.07894760.0789476
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ17(8,)\chi_{17} (8, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 17, (0: ), 0.07580.997i)(1,\ 17,\ (0:\ ),\ 0.0758 - 0.997i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.39305107250.3642743770i0.3930510725 - 0.3642743770i
L(12)L(\frac12) \approx 0.39305107250.3642743770i0.3930510725 - 0.3642743770i
L(1)L(1) \approx 0.64325042080.4152647231i0.6432504208 - 0.4152647231i
L(1)L(1) \approx 0.64325042080.4152647231i0.6432504208 - 0.4152647231i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad17 1 1
good2 1iT 1 - iT
3 1+(0.7070.707i)T 1 + (-0.707 - 0.707i)T
5 1+(0.707+0.707i)T 1 + (0.707 + 0.707i)T
7 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
11 1+(0.707+0.707i)T 1 + (-0.707 + 0.707i)T
13 1T 1 - T
19 1iT 1 - iT
23 1+(0.707+0.707i)T 1 + (-0.707 + 0.707i)T
29 1+(0.707+0.707i)T 1 + (0.707 + 0.707i)T
31 1+(0.7070.707i)T 1 + (-0.707 - 0.707i)T
37 1+(0.7070.707i)T 1 + (-0.707 - 0.707i)T
41 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
43 1+iT 1 + iT
47 1T 1 - T
53 1iT 1 - iT
59 1+iT 1 + iT
61 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
67 1+T 1 + T
71 1+(0.7070.707i)T 1 + (-0.707 - 0.707i)T
73 1+(0.707+0.707i)T 1 + (0.707 + 0.707i)T
79 1+(0.707+0.707i)T 1 + (-0.707 + 0.707i)T
83 1iT 1 - iT
89 1T 1 - T
97 1+(0.707+0.707i)T 1 + (0.707 + 0.707i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−41.78113281428913157097751556175, −40.49088600448141846299605349922, −39.74901620953299443468760304689, −37.60885502423026500222176839904, −36.36085380029876327740270208241, −34.590307070145623317103704703622, −33.88335533870203301031755919184, −32.54134894116512581757908671454, −31.567769782677363732134827762391, −29.06275433365868831471832760164, −27.82316850298224847048343793504, −26.64256881139864551522557469254, −24.9083980473007162621752234757, −23.84320748008473993086545937703, −22.09582685545340040570870347604, −21.10804943703809034169584922445, −18.25002335183789884203414139403, −17.075532607972307550969197780390, −15.91778375265039377644843496150, −14.36607509160395072561089268158, −12.36855757010477121158113533374, −10.01238724806638376954022051124, −8.45859216052355763456069731246, −5.87734309066374149436213082502, −4.851474204208871568224755857489, 2.12217010145779887966076947147, 5.075115308096543817057063202124, 7.40782305438915425283646460554, 10.099631006022388005816075471623, 11.27986990922035091305091711802, 12.937810668313017633046916861138, 14.258617677355082952028600362205, 17.43658391124540795162895968480, 18.05131796137856559804470653247, 19.70335533978972512386379496784, 21.44929725716774721606237700956, 22.69234679002922915638226316278, 23.9873787961286208002815348013, 26.12904035449572456747400044193, 27.72733025278830988965908446233, 29.163238467224250497882396208664, 29.965807102477822414522754471951, 31.04038193885368095363004612009, 33.20789636131639512568872683242, 34.46015772175810913043809216627, 36.3291400306786646872035852317, 36.97068255266554082689339828045, 38.74831002439893138928391708228, 39.89239477527859477534990061176, 41.06496375562159222630440514728

Graph of the ZZ-function along the critical line