L(s) = 1 | + i·2-s + (−0.707 + 0.707i)3-s − 4-s + (0.707 − 0.707i)5-s + (−0.707 − 0.707i)6-s + (0.707 + 0.707i)7-s − i·8-s − i·9-s + (0.707 + 0.707i)10-s + (−0.707 − 0.707i)11-s + (0.707 − 0.707i)12-s − 13-s + (−0.707 + 0.707i)14-s + i·15-s + 16-s + ⋯ |
L(s) = 1 | + i·2-s + (−0.707 + 0.707i)3-s − 4-s + (0.707 − 0.707i)5-s + (−0.707 − 0.707i)6-s + (0.707 + 0.707i)7-s − i·8-s − i·9-s + (0.707 + 0.707i)10-s + (−0.707 − 0.707i)11-s + (0.707 − 0.707i)12-s − 13-s + (−0.707 + 0.707i)14-s + i·15-s + 16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 17 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0758 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0758 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3930510725 + 0.3642743770i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3930510725 + 0.3642743770i\) |
\(L(1)\) |
\(\approx\) |
\(0.6432504208 + 0.4152647231i\) |
\(L(1)\) |
\(\approx\) |
\(0.6432504208 + 0.4152647231i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 17 | \( 1 \) |
good | 2 | \( 1 + iT \) |
| 3 | \( 1 + (-0.707 + 0.707i)T \) |
| 5 | \( 1 + (0.707 - 0.707i)T \) |
| 7 | \( 1 + (0.707 + 0.707i)T \) |
| 11 | \( 1 + (-0.707 - 0.707i)T \) |
| 13 | \( 1 - T \) |
| 19 | \( 1 + iT \) |
| 23 | \( 1 + (-0.707 - 0.707i)T \) |
| 29 | \( 1 + (0.707 - 0.707i)T \) |
| 31 | \( 1 + (-0.707 + 0.707i)T \) |
| 37 | \( 1 + (-0.707 + 0.707i)T \) |
| 41 | \( 1 + (0.707 + 0.707i)T \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 - T \) |
| 53 | \( 1 + iT \) |
| 59 | \( 1 - iT \) |
| 61 | \( 1 + (0.707 + 0.707i)T \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 + (-0.707 + 0.707i)T \) |
| 73 | \( 1 + (0.707 - 0.707i)T \) |
| 79 | \( 1 + (-0.707 - 0.707i)T \) |
| 83 | \( 1 + iT \) |
| 89 | \( 1 - T \) |
| 97 | \( 1 + (0.707 - 0.707i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−41.06496375562159222630440514728, −39.89239477527859477534990061176, −38.74831002439893138928391708228, −36.97068255266554082689339828045, −36.3291400306786646872035852317, −34.46015772175810913043809216627, −33.20789636131639512568872683242, −31.04038193885368095363004612009, −29.965807102477822414522754471951, −29.163238467224250497882396208664, −27.72733025278830988965908446233, −26.12904035449572456747400044193, −23.9873787961286208002815348013, −22.69234679002922915638226316278, −21.44929725716774721606237700956, −19.70335533978972512386379496784, −18.05131796137856559804470653247, −17.43658391124540795162895968480, −14.258617677355082952028600362205, −12.937810668313017633046916861138, −11.27986990922035091305091711802, −10.099631006022388005816075471623, −7.40782305438915425283646460554, −5.075115308096543817057063202124, −2.12217010145779887966076947147,
4.851474204208871568224755857489, 5.87734309066374149436213082502, 8.45859216052355763456069731246, 10.01238724806638376954022051124, 12.36855757010477121158113533374, 14.36607509160395072561089268158, 15.91778375265039377644843496150, 17.075532607972307550969197780390, 18.25002335183789884203414139403, 21.10804943703809034169584922445, 22.09582685545340040570870347604, 23.84320748008473993086545937703, 24.9083980473007162621752234757, 26.64256881139864551522557469254, 27.82316850298224847048343793504, 29.06275433365868831471832760164, 31.567769782677363732134827762391, 32.54134894116512581757908671454, 33.88335533870203301031755919184, 34.590307070145623317103704703622, 36.36085380029876327740270208241, 37.60885502423026500222176839904, 39.74901620953299443468760304689, 40.49088600448141846299605349922, 41.78113281428913157097751556175