L(s) = 1 | + (−0.972 + 0.233i)3-s + (−0.382 − 0.923i)7-s + (0.891 − 0.453i)9-s + (−0.649 − 0.760i)11-s + (0.951 + 0.309i)13-s + (0.987 − 0.156i)19-s + (0.587 + 0.809i)21-s + (0.649 + 0.760i)23-s + (−0.760 + 0.649i)27-s + (−0.233 − 0.972i)29-s + (0.522 + 0.852i)31-s + (0.809 + 0.587i)33-s + (−0.649 + 0.760i)37-s + (−0.996 − 0.0784i)39-s + (0.996 − 0.0784i)41-s + ⋯ |
L(s) = 1 | + (−0.972 + 0.233i)3-s + (−0.382 − 0.923i)7-s + (0.891 − 0.453i)9-s + (−0.649 − 0.760i)11-s + (0.951 + 0.309i)13-s + (0.987 − 0.156i)19-s + (0.587 + 0.809i)21-s + (0.649 + 0.760i)23-s + (−0.760 + 0.649i)27-s + (−0.233 − 0.972i)29-s + (0.522 + 0.852i)31-s + (0.809 + 0.587i)33-s + (−0.649 + 0.760i)37-s + (−0.996 − 0.0784i)39-s + (0.996 − 0.0784i)41-s + ⋯ |
Λ(s)=(=(1700s/2ΓR(s)L(s)(0.740−0.671i)Λ(1−s)
Λ(s)=(=(1700s/2ΓR(s)L(s)(0.740−0.671i)Λ(1−s)
Degree: |
1 |
Conductor: |
1700
= 22⋅52⋅17
|
Sign: |
0.740−0.671i
|
Analytic conductor: |
7.89476 |
Root analytic conductor: |
7.89476 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1700(1391,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 1700, (0: ), 0.740−0.671i)
|
Particular Values
L(21) |
≈ |
0.9892108230−0.3817505143i |
L(21) |
≈ |
0.9892108230−0.3817505143i |
L(1) |
≈ |
0.8114174476−0.08950248029i |
L(1) |
≈ |
0.8114174476−0.08950248029i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 17 | 1 |
good | 3 | 1+(−0.972+0.233i)T |
| 7 | 1+(−0.382−0.923i)T |
| 11 | 1+(−0.649−0.760i)T |
| 13 | 1+(0.951+0.309i)T |
| 19 | 1+(0.987−0.156i)T |
| 23 | 1+(0.649+0.760i)T |
| 29 | 1+(−0.233−0.972i)T |
| 31 | 1+(0.522+0.852i)T |
| 37 | 1+(−0.649+0.760i)T |
| 41 | 1+(0.996−0.0784i)T |
| 43 | 1+(−0.707−0.707i)T |
| 47 | 1+(0.587+0.809i)T |
| 53 | 1+(−0.156+0.987i)T |
| 59 | 1+(0.891−0.453i)T |
| 61 | 1+(0.760−0.649i)T |
| 67 | 1+(−0.809−0.587i)T |
| 71 | 1+(−0.972+0.233i)T |
| 73 | 1+(0.996+0.0784i)T |
| 79 | 1+(0.522−0.852i)T |
| 83 | 1+(−0.987+0.156i)T |
| 89 | 1+(0.951−0.309i)T |
| 97 | 1+(−0.233−0.972i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−20.637071161054479171988963958050, −19.50404870555162454212433158893, −18.69299152252920814520305345875, −18.12318383613684634264705605823, −17.74347792769295704353825635410, −16.56623825247794786476328192070, −16.051909689183877828579662710025, −15.41807875340019450746954682533, −14.606325772380390618908662400930, −13.317175355316247135599896944248, −12.90167521467628034168455678782, −12.14932217750985750503291793002, −11.46978822093038021617921330432, −10.63760087815582981738442627027, −9.94432683019214262398006153301, −9.056704022458572325184483346815, −8.117120577114200720703422235300, −7.20592294595407168661741885562, −6.47206769896714553342338838870, −5.563637217088214479594864320777, −5.16389069358704106679970807378, −4.04696299975488648884579499896, −2.91487787633447502074323405590, −1.972803529012382556888293859731, −0.854358982855034274947511546159,
0.63438489289380589003018459895, 1.422548951380215449954448138364, 3.07382180643861192131659982875, 3.75085436901541900589421368278, 4.68674248068302143277730620851, 5.539647693732350332761844071965, 6.25968603278647302510529064135, 7.06168009302515837842530216897, 7.82173240826014397426813971320, 8.93903148657543202098687040022, 9.81295445353197849215608680095, 10.52899647655061692650336417023, 11.15506977343001032514998863918, 11.7607508359061579722634653307, 12.80880850699009361427008096024, 13.52950442318282707837465075805, 13.993279155386098042697210421360, 15.44728070760333327334469698473, 15.867142934037043735336089894988, 16.51956052380499917014363421822, 17.25409110395752091307601288114, 17.886997147461657907741826168084, 18.77471272247380483123383729554, 19.30283270799059229273834187536, 20.50881986877819711311839294070