Properties

Label 1700.1391
Modulus 17001700
Conductor 17001700
Order 8080
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1700, base_ring=CyclotomicField(80))
 
M = H._module
 
chi = DirichletCharacter(H, M([40,16,45]))
 
pari: [g,chi] = znchar(Mod(1391,1700))
 

Basic properties

Modulus: 17001700
Conductor: 17001700
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 8080
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1700.cq

χ1700(11,)\chi_{1700}(11,\cdot) χ1700(31,)\chi_{1700}(31,\cdot) χ1700(71,)\chi_{1700}(71,\cdot) χ1700(91,)\chi_{1700}(91,\cdot) χ1700(131,)\chi_{1700}(131,\cdot) χ1700(211,)\chi_{1700}(211,\cdot) χ1700(231,)\chi_{1700}(231,\cdot) χ1700(311,)\chi_{1700}(311,\cdot) χ1700(371,)\chi_{1700}(371,\cdot) χ1700(411,)\chi_{1700}(411,\cdot) χ1700(431,)\chi_{1700}(431,\cdot) χ1700(471,)\chi_{1700}(471,\cdot) χ1700(571,)\chi_{1700}(571,\cdot) χ1700(691,)\chi_{1700}(691,\cdot) χ1700(711,)\chi_{1700}(711,\cdot) χ1700(771,)\chi_{1700}(771,\cdot) χ1700(811,)\chi_{1700}(811,\cdot) χ1700(891,)\chi_{1700}(891,\cdot) χ1700(911,)\chi_{1700}(911,\cdot) χ1700(991,)\chi_{1700}(991,\cdot) χ1700(1031,)\chi_{1700}(1031,\cdot) χ1700(1091,)\chi_{1700}(1091,\cdot) χ1700(1111,)\chi_{1700}(1111,\cdot) χ1700(1231,)\chi_{1700}(1231,\cdot) χ1700(1331,)\chi_{1700}(1331,\cdot) χ1700(1371,)\chi_{1700}(1371,\cdot) χ1700(1391,)\chi_{1700}(1391,\cdot) χ1700(1431,)\chi_{1700}(1431,\cdot) χ1700(1491,)\chi_{1700}(1491,\cdot) χ1700(1571,)\chi_{1700}(1571,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ80)\Q(\zeta_{80})
Fixed field: Number field defined by a degree 80 polynomial

Values on generators

(851,477,1601)(851,477,1601)(1,e(15),e(916))(-1,e\left(\frac{1}{5}\right),e\left(\frac{9}{16}\right))

First values

aa 1-1113377991111131319192121232327272929
χ1700(1391,a) \chi_{ 1700 }(1391, a) 1111e(3780)e\left(\frac{37}{80}\right)e(1116)e\left(\frac{11}{16}\right)e(3740)e\left(\frac{37}{40}\right)e(5180)e\left(\frac{51}{80}\right)e(120)e\left(\frac{1}{20}\right)e(3940)e\left(\frac{39}{40}\right)e(320)e\left(\frac{3}{20}\right)e(1180)e\left(\frac{11}{80}\right)e(3180)e\left(\frac{31}{80}\right)e(5780)e\left(\frac{57}{80}\right)
sage: chi.jacobi_sum(n)
 
χ1700(1391,a)   \chi_{ 1700 }(1391,a) \; at   a=\;a = e.g. 2