from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1700, base_ring=CyclotomicField(80))
M = H._module
chi = DirichletCharacter(H, M([40,16,45]))
pari: [g,chi] = znchar(Mod(1391,1700))
χ1700(11,⋅)
χ1700(31,⋅)
χ1700(71,⋅)
χ1700(91,⋅)
χ1700(131,⋅)
χ1700(211,⋅)
χ1700(231,⋅)
χ1700(311,⋅)
χ1700(371,⋅)
χ1700(411,⋅)
χ1700(431,⋅)
χ1700(471,⋅)
χ1700(571,⋅)
χ1700(691,⋅)
χ1700(711,⋅)
χ1700(771,⋅)
χ1700(811,⋅)
χ1700(891,⋅)
χ1700(911,⋅)
χ1700(991,⋅)
χ1700(1031,⋅)
χ1700(1091,⋅)
χ1700(1111,⋅)
χ1700(1231,⋅)
χ1700(1331,⋅)
χ1700(1371,⋅)
χ1700(1391,⋅)
χ1700(1431,⋅)
χ1700(1491,⋅)
χ1700(1571,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(851,477,1601) → (−1,e(51),e(169))
a |
−1 | 1 | 3 | 7 | 9 | 11 | 13 | 19 | 21 | 23 | 27 | 29 |
χ1700(1391,a) |
1 | 1 | e(8037) | e(1611) | e(4037) | e(8051) | e(201) | e(4039) | e(203) | e(8011) | e(8031) | e(8057) |