L(s) = 1 | + (0.435 − 0.900i)2-s + (0.263 + 0.964i)3-s + (−0.621 − 0.783i)4-s + (−0.729 − 0.684i)5-s + (0.983 + 0.182i)6-s + (0.0275 + 0.999i)7-s + (−0.975 + 0.218i)8-s + (−0.861 + 0.507i)9-s + (−0.933 + 0.359i)10-s + (0.350 − 0.936i)11-s + (0.592 − 0.805i)12-s + (−0.418 + 0.908i)13-s + (0.912 + 0.410i)14-s + (0.467 − 0.883i)15-s + (−0.227 + 0.973i)16-s + (−0.367 − 0.929i)17-s + ⋯ |
L(s) = 1 | + (0.435 − 0.900i)2-s + (0.263 + 0.964i)3-s + (−0.621 − 0.783i)4-s + (−0.729 − 0.684i)5-s + (0.983 + 0.182i)6-s + (0.0275 + 0.999i)7-s + (−0.975 + 0.218i)8-s + (−0.861 + 0.507i)9-s + (−0.933 + 0.359i)10-s + (0.350 − 0.936i)11-s + (0.592 − 0.805i)12-s + (−0.418 + 0.908i)13-s + (0.912 + 0.410i)14-s + (0.467 − 0.883i)15-s + (−0.227 + 0.973i)16-s + (−0.367 − 0.929i)17-s + ⋯ |
Λ(s)=(=(361s/2ΓR(s+1)L(s)(0.618−0.786i)Λ(1−s)
Λ(s)=(=(361s/2ΓR(s+1)L(s)(0.618−0.786i)Λ(1−s)
Degree: |
1 |
Conductor: |
361
= 192
|
Sign: |
0.618−0.786i
|
Analytic conductor: |
38.7948 |
Root analytic conductor: |
38.7948 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ361(72,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 361, (1: ), 0.618−0.786i)
|
Particular Values
L(21) |
≈ |
1.684881454−0.8186479329i |
L(21) |
≈ |
1.684881454−0.8186479329i |
L(1) |
≈ |
1.126526105−0.3181898696i |
L(1) |
≈ |
1.126526105−0.3181898696i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 19 | 1 |
good | 2 | 1+(0.435−0.900i)T |
| 3 | 1+(0.263+0.964i)T |
| 5 | 1+(−0.729−0.684i)T |
| 7 | 1+(0.0275+0.999i)T |
| 11 | 1+(0.350−0.936i)T |
| 13 | 1+(−0.418+0.908i)T |
| 17 | 1+(−0.367−0.929i)T |
| 23 | 1+(0.967−0.254i)T |
| 29 | 1+(0.979−0.200i)T |
| 31 | 1+(0.962−0.272i)T |
| 37 | 1+(0.986−0.164i)T |
| 41 | 1+(0.951+0.307i)T |
| 43 | 1+(−0.155−0.987i)T |
| 47 | 1+(−0.649+0.760i)T |
| 53 | 1+(0.333+0.942i)T |
| 59 | 1+(−0.209−0.977i)T |
| 61 | 1+(−0.842−0.539i)T |
| 67 | 1+(0.991+0.128i)T |
| 71 | 1+(0.842−0.539i)T |
| 73 | 1+(0.989+0.146i)T |
| 79 | 1+(0.777−0.628i)T |
| 83 | 1+(0.451−0.892i)T |
| 89 | 1+(−0.989+0.146i)T |
| 97 | 1+(0.991−0.128i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−24.56623701540944291132305834970, −23.70231662344816191060891819574, −22.9422305309409891572624125718, −22.68994828822150769968167207292, −21.2145015463555136401527900809, −19.88101404187648136863541708671, −19.51167443759334030366764777039, −18.10936097525073194450264866209, −17.5900006021725429103761339342, −16.745948051564338125267929590477, −15.32939345381061913669678946774, −14.81886745216537891317951162423, −13.97673875383192512679669464046, −12.97974393014678995188324143441, −12.33424276672206793232031915601, −11.19170928645802219235283432442, −9.902770680048915945129717195120, −8.39777934512047929366242132731, −7.70345994889200761595522523484, −6.97745152225105312912523981717, −6.34096892317540277347923729415, −4.76885292453383031327158512564, −3.71712221830111078047546419427, −2.70312539915284389326661872926, −0.80466701630539282122496744923,
0.65860567497577048519888264405, 2.41217669332751646146895267799, 3.30611472840788897295602740041, 4.48770203531716964973781174031, 4.99708375360308091720932219440, 6.217742774938936196467496498369, 8.215375453293684319540426653158, 9.07625903450656482199655008536, 9.49844588808037249982724256438, 11.03015145972155944982558507268, 11.57354477614724963400713417339, 12.354071520919667806177146889, 13.61518905624625853697844057016, 14.45844492612646149716670384684, 15.40867987074178674639026906163, 16.100054214493760652887375364462, 17.14298243157793258794285813184, 18.65543986945174404820544183264, 19.32938571112958815029034379019, 20.05294795015563047822222410364, 21.09831041910521253774736178817, 21.497226219996508373728617093504, 22.405687499623569018466560872827, 23.221331600489328474400437221195, 24.38911018403410250303215150175