Properties

Label 361.72
Modulus 361361
Conductor 361361
Order 342342
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(361, base_ring=CyclotomicField(342))
 
M = H._module
 
chi = DirichletCharacter(H, M([281]))
 
pari: [g,chi] = znchar(Mod(72,361))
 

Basic properties

Modulus: 361361
Conductor: 361361
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 342342
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 361.l

χ361(2,)\chi_{361}(2,\cdot) χ361(3,)\chi_{361}(3,\cdot) χ361(10,)\chi_{361}(10,\cdot) χ361(13,)\chi_{361}(13,\cdot) χ361(14,)\chi_{361}(14,\cdot) χ361(15,)\chi_{361}(15,\cdot) χ361(21,)\chi_{361}(21,\cdot) χ361(22,)\chi_{361}(22,\cdot) χ361(29,)\chi_{361}(29,\cdot) χ361(32,)\chi_{361}(32,\cdot) χ361(33,)\chi_{361}(33,\cdot) χ361(34,)\chi_{361}(34,\cdot) χ361(40,)\chi_{361}(40,\cdot) χ361(41,)\chi_{361}(41,\cdot) χ361(48,)\chi_{361}(48,\cdot) χ361(51,)\chi_{361}(51,\cdot) χ361(52,)\chi_{361}(52,\cdot) χ361(53,)\chi_{361}(53,\cdot) χ361(59,)\chi_{361}(59,\cdot) χ361(60,)\chi_{361}(60,\cdot) χ361(67,)\chi_{361}(67,\cdot) χ361(70,)\chi_{361}(70,\cdot) χ361(71,)\chi_{361}(71,\cdot) χ361(72,)\chi_{361}(72,\cdot) χ361(78,)\chi_{361}(78,\cdot) χ361(79,)\chi_{361}(79,\cdot) χ361(86,)\chi_{361}(86,\cdot) χ361(89,)\chi_{361}(89,\cdot) χ361(90,)\chi_{361}(90,\cdot) χ361(91,)\chi_{361}(91,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ171)\Q(\zeta_{171})
Fixed field: Number field defined by a degree 342 polynomial (not computed)

Values on generators

22e(281342)e\left(\frac{281}{342}\right)

First values

aa 1-111223344556677889910101111
χ361(72,a) \chi_{ 361 }(72, a) 1-111e(281342)e\left(\frac{281}{342}\right)e(71342)e\left(\frac{71}{342}\right)e(110171)e\left(\frac{110}{171}\right)e(106171)e\left(\frac{106}{171}\right)e(5171)e\left(\frac{5}{171}\right)e(1457)e\left(\frac{14}{57}\right)e(53114)e\left(\frac{53}{114}\right)e(71171)e\left(\frac{71}{171}\right)e(151342)e\left(\frac{151}{342}\right)e(4657)e\left(\frac{46}{57}\right)
sage: chi.jacobi_sum(n)
 
χ361(72,a)   \chi_{ 361 }(72,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ361(72,))   \tau_{ a }( \chi_{ 361 }(72,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ361(72,),χ361(n,))   J(\chi_{ 361 }(72,·),\chi_{ 361 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ361(72,))  K(a,b,\chi_{ 361 }(72,·)) \; at   a,b=\; a,b = e.g. 1,2