from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(361, base_ring=CyclotomicField(342))
M = H._module
chi = DirichletCharacter(H, M([281]))
pari: [g,chi] = znchar(Mod(72,361))
χ361(2,⋅)
χ361(3,⋅)
χ361(10,⋅)
χ361(13,⋅)
χ361(14,⋅)
χ361(15,⋅)
χ361(21,⋅)
χ361(22,⋅)
χ361(29,⋅)
χ361(32,⋅)
χ361(33,⋅)
χ361(34,⋅)
χ361(40,⋅)
χ361(41,⋅)
χ361(48,⋅)
χ361(51,⋅)
χ361(52,⋅)
χ361(53,⋅)
χ361(59,⋅)
χ361(60,⋅)
χ361(67,⋅)
χ361(70,⋅)
χ361(71,⋅)
χ361(72,⋅)
χ361(78,⋅)
χ361(79,⋅)
χ361(86,⋅)
χ361(89,⋅)
χ361(90,⋅)
χ361(91,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
2 → e(342281)
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
χ361(72,a) |
−1 | 1 | e(342281) | e(34271) | e(171110) | e(171106) | e(1715) | e(5714) | e(11453) | e(17171) | e(342151) | e(5746) |
pari: znchargauss(g,chi,a)
sage: chi.kloosterman_sum(a,b)