from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(361, base_ring=CyclotomicField(342))
M = H._module
chi = DirichletCharacter(H, M([269]))
pari: [g,chi] = znchar(Mod(67,361))
χ361(2,⋅)
χ361(3,⋅)
χ361(10,⋅)
χ361(13,⋅)
χ361(14,⋅)
χ361(15,⋅)
χ361(21,⋅)
χ361(22,⋅)
χ361(29,⋅)
χ361(32,⋅)
χ361(33,⋅)
χ361(34,⋅)
χ361(40,⋅)
χ361(41,⋅)
χ361(48,⋅)
χ361(51,⋅)
χ361(52,⋅)
χ361(53,⋅)
χ361(59,⋅)
χ361(60,⋅)
χ361(67,⋅)
χ361(70,⋅)
χ361(71,⋅)
χ361(72,⋅)
χ361(78,⋅)
χ361(79,⋅)
χ361(86,⋅)
χ361(89,⋅)
χ361(90,⋅)
χ361(91,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
2 → e(342269)
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
χ361(67,a) |
−1 | 1 | e(342269) | e(342113) | e(17198) | e(17182) | e(17120) | e(5756) | e(11441) | e(171113) | e(34291) | e(5713) |
pari: znchargauss(g,chi,a)
sage: chi.kloosterman_sum(a,b)