L(s) = 1 | + 2-s − 3-s + 4-s + 5-s − 6-s − 7-s + 8-s + 9-s + 10-s − 12-s + 13-s − 14-s − 15-s + 16-s − 17-s + 18-s + 20-s + 21-s + 23-s − 24-s + 25-s + 26-s − 27-s − 28-s + 29-s − 30-s − 31-s + ⋯ |
L(s) = 1 | + 2-s − 3-s + 4-s + 5-s − 6-s − 7-s + 8-s + 9-s + 10-s − 12-s + 13-s − 14-s − 15-s + 16-s − 17-s + 18-s + 20-s + 21-s + 23-s − 24-s + 25-s + 26-s − 27-s − 28-s + 29-s − 30-s − 31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 209 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 209 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.819007195\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.819007195\) |
\(L(1)\) |
\(\approx\) |
\(1.582843421\) |
\(L(1)\) |
\(\approx\) |
\(1.582843421\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
| 19 | \( 1 \) |
good | 2 | \( 1 + T \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 + T \) |
| 7 | \( 1 - T \) |
| 13 | \( 1 + T \) |
| 17 | \( 1 - T \) |
| 23 | \( 1 + T \) |
| 29 | \( 1 + T \) |
| 31 | \( 1 - T \) |
| 37 | \( 1 - T \) |
| 41 | \( 1 + T \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 + T \) |
| 53 | \( 1 - T \) |
| 59 | \( 1 - T \) |
| 61 | \( 1 - T \) |
| 67 | \( 1 - T \) |
| 71 | \( 1 - T \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 + T \) |
| 83 | \( 1 - T \) |
| 89 | \( 1 - T \) |
| 97 | \( 1 - T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−26.52157086857984237436147729784, −25.48799545286660269029242100386, −24.77002847342185424294462072275, −23.64966656516860431172661616517, −22.86103986871479932325827835601, −22.13127744545099791727069350925, −21.42529334457695320800231971678, −20.467055439286099450472592586173, −19.15411608742692215700768213299, −18.00080019171790357813052379116, −16.95489017094725256500110424661, −16.13680605556753732982222986140, −15.31386443953591105073857867050, −13.79001820351988707356142082051, −13.120808286855691007396110208804, −12.37097673137133506530062607593, −11.040553244941788538654473940064, −10.39768940998969598821517204932, −9.10850750826991243831145318440, −7.01579200081937518330201058299, −6.32631529122611169167695912482, −5.57269004835378996106227683316, −4.40522554417283633106510990359, −3.01762053306054782097821678127, −1.50853101202667268041330150571,
1.50853101202667268041330150571, 3.01762053306054782097821678127, 4.40522554417283633106510990359, 5.57269004835378996106227683316, 6.32631529122611169167695912482, 7.01579200081937518330201058299, 9.10850750826991243831145318440, 10.39768940998969598821517204932, 11.040553244941788538654473940064, 12.37097673137133506530062607593, 13.120808286855691007396110208804, 13.79001820351988707356142082051, 15.31386443953591105073857867050, 16.13680605556753732982222986140, 16.95489017094725256500110424661, 18.00080019171790357813052379116, 19.15411608742692215700768213299, 20.467055439286099450472592586173, 21.42529334457695320800231971678, 22.13127744545099791727069350925, 22.86103986871479932325827835601, 23.64966656516860431172661616517, 24.77002847342185424294462072275, 25.48799545286660269029242100386, 26.52157086857984237436147729784