Properties

Label 209.208
Modulus 209209
Conductor 209209
Order 22
Real yes
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(209, base_ring=CyclotomicField(2))
 
M = H._module
 
chi = DirichletCharacter(H, M([1,1]))
 
pari: [g,chi] = znchar(Mod(208,209))
 

Kronecker symbol representation

sage: kronecker_character(209)
 
pari: znchartokronecker(g,chi)
 

(209)\displaystyle\left(\frac{209}{\bullet}\right)

Basic properties

Modulus: 209209
Conductor: 209209
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 22
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 209.d

χ209(208,)\chi_{209}(208,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q\Q
Fixed field: Q(209)\Q(\sqrt{209})

Values on generators

(134,78)(134,78)(1,1)(-1,-1)

First values

aa 1-111223344556677889910101212
χ209(208,a) \chi_{ 209 }(208, a) 1111111-111111-11-11111111-1
sage: chi.jacobi_sum(n)
 
χ209(208,a)   \chi_{ 209 }(208,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ209(208,))   \tau_{ a }( \chi_{ 209 }(208,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ209(208,),χ209(n,))   J(\chi_{ 209 }(208,·),\chi_{ 209 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ209(208,))  K(a,b,\chi_{ 209 }(208,·)) \; at   a,b=\; a,b = e.g. 1,2