Properties

Label 1-223-223.28-r0-0-0
Degree 11
Conductor 223223
Sign 0.3050.952i-0.305 - 0.952i
Analytic cond. 1.035601.03560
Root an. cond. 1.035601.03560
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.524 + 0.851i)2-s + (−0.911 − 0.411i)3-s + (−0.450 + 0.892i)4-s + (−0.996 − 0.0848i)5-s + (−0.127 − 0.991i)6-s + (0.372 + 0.927i)7-s + (−0.996 + 0.0848i)8-s + (0.660 + 0.750i)9-s + (−0.450 − 0.892i)10-s + (−0.127 − 0.991i)11-s + (0.778 − 0.628i)12-s + (−0.911 + 0.411i)13-s + (−0.594 + 0.803i)14-s + (0.873 + 0.487i)15-s + (−0.594 − 0.803i)16-s + (−0.127 − 0.991i)17-s + ⋯
L(s)  = 1  + (0.524 + 0.851i)2-s + (−0.911 − 0.411i)3-s + (−0.450 + 0.892i)4-s + (−0.996 − 0.0848i)5-s + (−0.127 − 0.991i)6-s + (0.372 + 0.927i)7-s + (−0.996 + 0.0848i)8-s + (0.660 + 0.750i)9-s + (−0.450 − 0.892i)10-s + (−0.127 − 0.991i)11-s + (0.778 − 0.628i)12-s + (−0.911 + 0.411i)13-s + (−0.594 + 0.803i)14-s + (0.873 + 0.487i)15-s + (−0.594 − 0.803i)16-s + (−0.127 − 0.991i)17-s + ⋯

Functional equation

Λ(s)=(223s/2ΓR(s)L(s)=((0.3050.952i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 223 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.305 - 0.952i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(223s/2ΓR(s)L(s)=((0.3050.952i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 223 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.305 - 0.952i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 223223
Sign: 0.3050.952i-0.305 - 0.952i
Analytic conductor: 1.035601.03560
Root analytic conductor: 1.035601.03560
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ223(28,)\chi_{223} (28, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 223, (0: ), 0.3050.952i)(1,\ 223,\ (0:\ ),\ -0.305 - 0.952i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.034247428650.04692951972i0.03424742865 - 0.04692951972i
L(12)L(\frac12) \approx 0.034247428650.04692951972i0.03424742865 - 0.04692951972i
L(1)L(1) \approx 0.5526853841+0.2244700788i0.5526853841 + 0.2244700788i
L(1)L(1) \approx 0.5526853841+0.2244700788i0.5526853841 + 0.2244700788i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad223 1 1
good2 1+(0.524+0.851i)T 1 + (0.524 + 0.851i)T
3 1+(0.9110.411i)T 1 + (-0.911 - 0.411i)T
5 1+(0.9960.0848i)T 1 + (-0.996 - 0.0848i)T
7 1+(0.372+0.927i)T 1 + (0.372 + 0.927i)T
11 1+(0.1270.991i)T 1 + (-0.127 - 0.991i)T
13 1+(0.911+0.411i)T 1 + (-0.911 + 0.411i)T
17 1+(0.1270.991i)T 1 + (-0.127 - 0.991i)T
19 1+(0.7210.691i)T 1 + (-0.721 - 0.691i)T
23 1+(0.9960.0848i)T 1 + (-0.996 - 0.0848i)T
29 1+(0.5940.803i)T 1 + (-0.594 - 0.803i)T
31 1+(0.9670.251i)T 1 + (-0.967 - 0.251i)T
37 1+(0.127+0.991i)T 1 + (-0.127 + 0.991i)T
41 1+(0.2100.977i)T 1 + (0.210 - 0.977i)T
43 1+(0.9850.169i)T 1 + (0.985 - 0.169i)T
47 1+(0.721+0.691i)T 1 + (-0.721 + 0.691i)T
53 1+(0.828+0.559i)T 1 + (-0.828 + 0.559i)T
59 1+(0.778+0.628i)T 1 + (0.778 + 0.628i)T
61 1+(0.911+0.411i)T 1 + (-0.911 + 0.411i)T
67 1+(0.450+0.892i)T 1 + (-0.450 + 0.892i)T
71 1+(0.778+0.628i)T 1 + (0.778 + 0.628i)T
73 1+(0.04240.999i)T 1 + (0.0424 - 0.999i)T
79 1+(0.2100.977i)T 1 + (0.210 - 0.977i)T
83 1+(0.985+0.169i)T 1 + (0.985 + 0.169i)T
89 1+(0.996+0.0848i)T 1 + (-0.996 + 0.0848i)T
97 1+(0.996+0.0848i)T 1 + (-0.996 + 0.0848i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−27.22269522342802876955301888514, −26.21021279394698083128859420518, −24.27144339924900676196868398163, −23.61252606436184080141510281467, −22.98146572202880847599425335432, −22.22436167189524028813592326166, −21.19501257301375458526328715443, −20.18044727467260432053072734431, −19.61074682340562744963370339539, −18.26067804408694030060558010204, −17.41202296801820650992291003572, −16.29049607251395498935515588668, −15.0309606055242712250089755654, −14.55361581101866035887293330023, −12.69496384378583439625387159450, −12.38193998381389913972352717692, −11.117826389798647302846365381983, −10.566355345747575330716032522201, −9.65235475220955060806959957913, −7.891605310141999499005709494668, −6.708464540522863129271461072999, −5.26356002605501438970648509460, −4.306715885395680971634406275566, −3.69589442537302091257060784385, −1.72077963065749828087903754462, 0.03934758939018773510645279308, 2.57151604465234518862689194933, 4.24085540150002333687417666214, 5.138776429918033301935724335539, 6.102041966044927682896754627423, 7.23700811330821594394382912997, 8.05779426150454546267526218770, 9.170488420940560669453178079071, 11.153108034806590578982205849568, 11.84096957233558137020764235934, 12.55334943745162356753771317804, 13.72391141556272343161388355361, 14.91650876245115425202637185854, 15.84001491232406445591543374932, 16.48919140549705880072844381033, 17.51886587932505095099796449603, 18.53199415975255541366188073912, 19.24487827016131051726455938144, 20.925846540932275367319336643729, 22.09107117178282667772946933546, 22.39415393997094884308569729467, 23.770822512153994158763222639858, 24.11408355787692627341978736440, 24.790555902270009867627026265179, 26.14012045072168194302034715767

Graph of the ZZ-function along the critical line