L(s) = 1 | + (0.524 + 0.851i)2-s + (−0.911 − 0.411i)3-s + (−0.450 + 0.892i)4-s + (−0.996 − 0.0848i)5-s + (−0.127 − 0.991i)6-s + (0.372 + 0.927i)7-s + (−0.996 + 0.0848i)8-s + (0.660 + 0.750i)9-s + (−0.450 − 0.892i)10-s + (−0.127 − 0.991i)11-s + (0.778 − 0.628i)12-s + (−0.911 + 0.411i)13-s + (−0.594 + 0.803i)14-s + (0.873 + 0.487i)15-s + (−0.594 − 0.803i)16-s + (−0.127 − 0.991i)17-s + ⋯ |
L(s) = 1 | + (0.524 + 0.851i)2-s + (−0.911 − 0.411i)3-s + (−0.450 + 0.892i)4-s + (−0.996 − 0.0848i)5-s + (−0.127 − 0.991i)6-s + (0.372 + 0.927i)7-s + (−0.996 + 0.0848i)8-s + (0.660 + 0.750i)9-s + (−0.450 − 0.892i)10-s + (−0.127 − 0.991i)11-s + (0.778 − 0.628i)12-s + (−0.911 + 0.411i)13-s + (−0.594 + 0.803i)14-s + (0.873 + 0.487i)15-s + (−0.594 − 0.803i)16-s + (−0.127 − 0.991i)17-s + ⋯ |
Λ(s)=(=(223s/2ΓR(s)L(s)(−0.305−0.952i)Λ(1−s)
Λ(s)=(=(223s/2ΓR(s)L(s)(−0.305−0.952i)Λ(1−s)
Degree: |
1 |
Conductor: |
223
|
Sign: |
−0.305−0.952i
|
Analytic conductor: |
1.03560 |
Root analytic conductor: |
1.03560 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ223(28,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 223, (0: ), −0.305−0.952i)
|
Particular Values
L(21) |
≈ |
0.03424742865−0.04692951972i |
L(21) |
≈ |
0.03424742865−0.04692951972i |
L(1) |
≈ |
0.5526853841+0.2244700788i |
L(1) |
≈ |
0.5526853841+0.2244700788i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 223 | 1 |
good | 2 | 1+(0.524+0.851i)T |
| 3 | 1+(−0.911−0.411i)T |
| 5 | 1+(−0.996−0.0848i)T |
| 7 | 1+(0.372+0.927i)T |
| 11 | 1+(−0.127−0.991i)T |
| 13 | 1+(−0.911+0.411i)T |
| 17 | 1+(−0.127−0.991i)T |
| 19 | 1+(−0.721−0.691i)T |
| 23 | 1+(−0.996−0.0848i)T |
| 29 | 1+(−0.594−0.803i)T |
| 31 | 1+(−0.967−0.251i)T |
| 37 | 1+(−0.127+0.991i)T |
| 41 | 1+(0.210−0.977i)T |
| 43 | 1+(0.985−0.169i)T |
| 47 | 1+(−0.721+0.691i)T |
| 53 | 1+(−0.828+0.559i)T |
| 59 | 1+(0.778+0.628i)T |
| 61 | 1+(−0.911+0.411i)T |
| 67 | 1+(−0.450+0.892i)T |
| 71 | 1+(0.778+0.628i)T |
| 73 | 1+(0.0424−0.999i)T |
| 79 | 1+(0.210−0.977i)T |
| 83 | 1+(0.985+0.169i)T |
| 89 | 1+(−0.996+0.0848i)T |
| 97 | 1+(−0.996+0.0848i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−27.22269522342802876955301888514, −26.21021279394698083128859420518, −24.27144339924900676196868398163, −23.61252606436184080141510281467, −22.98146572202880847599425335432, −22.22436167189524028813592326166, −21.19501257301375458526328715443, −20.18044727467260432053072734431, −19.61074682340562744963370339539, −18.26067804408694030060558010204, −17.41202296801820650992291003572, −16.29049607251395498935515588668, −15.0309606055242712250089755654, −14.55361581101866035887293330023, −12.69496384378583439625387159450, −12.38193998381389913972352717692, −11.117826389798647302846365381983, −10.566355345747575330716032522201, −9.65235475220955060806959957913, −7.891605310141999499005709494668, −6.708464540522863129271461072999, −5.26356002605501438970648509460, −4.306715885395680971634406275566, −3.69589442537302091257060784385, −1.72077963065749828087903754462,
0.03934758939018773510645279308, 2.57151604465234518862689194933, 4.24085540150002333687417666214, 5.138776429918033301935724335539, 6.102041966044927682896754627423, 7.23700811330821594394382912997, 8.05779426150454546267526218770, 9.170488420940560669453178079071, 11.153108034806590578982205849568, 11.84096957233558137020764235934, 12.55334943745162356753771317804, 13.72391141556272343161388355361, 14.91650876245115425202637185854, 15.84001491232406445591543374932, 16.48919140549705880072844381033, 17.51886587932505095099796449603, 18.53199415975255541366188073912, 19.24487827016131051726455938144, 20.925846540932275367319336643729, 22.09107117178282667772946933546, 22.39415393997094884308569729467, 23.770822512153994158763222639858, 24.11408355787692627341978736440, 24.790555902270009867627026265179, 26.14012045072168194302034715767