from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(223, base_ring=CyclotomicField(74))
M = H._module
chi = DirichletCharacter(H, M([42]))
pari: [g,chi] = znchar(Mod(28,223))
χ223(2,⋅)
χ223(4,⋅)
χ223(7,⋅)
χ223(8,⋅)
χ223(14,⋅)
χ223(15,⋅)
χ223(16,⋅)
χ223(17,⋅)
χ223(28,⋅)
χ223(30,⋅)
χ223(32,⋅)
χ223(33,⋅)
χ223(34,⋅)
χ223(41,⋅)
χ223(49,⋅)
χ223(56,⋅)
χ223(60,⋅)
χ223(64,⋅)
χ223(66,⋅)
χ223(68,⋅)
χ223(82,⋅)
χ223(98,⋅)
χ223(105,⋅)
χ223(112,⋅)
χ223(115,⋅)
χ223(119,⋅)
χ223(120,⋅)
χ223(128,⋅)
χ223(132,⋅)
χ223(136,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
3 → e(3721)
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
χ223(28,a) |
1 | 1 | e(376) | e(3721) | e(3712) | e(3719) | e(3727) | e(377) | e(3718) | e(375) | e(3725) | e(3727) |
pari: znchargauss(g,chi,a)
sage: chi.kloosterman_sum(a,b)