Properties

Label 223.17
Modulus 223223
Conductor 223223
Order 3737
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(223, base_ring=CyclotomicField(74))
 
M = H._module
 
chi = DirichletCharacter(H, M([48]))
 
pari: [g,chi] = znchar(Mod(17,223))
 

Basic properties

Modulus: 223223
Conductor: 223223
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 3737
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 223.e

χ223(2,)\chi_{223}(2,\cdot) χ223(4,)\chi_{223}(4,\cdot) χ223(7,)\chi_{223}(7,\cdot) χ223(8,)\chi_{223}(8,\cdot) χ223(14,)\chi_{223}(14,\cdot) χ223(15,)\chi_{223}(15,\cdot) χ223(16,)\chi_{223}(16,\cdot) χ223(17,)\chi_{223}(17,\cdot) χ223(28,)\chi_{223}(28,\cdot) χ223(30,)\chi_{223}(30,\cdot) χ223(32,)\chi_{223}(32,\cdot) χ223(33,)\chi_{223}(33,\cdot) χ223(34,)\chi_{223}(34,\cdot) χ223(41,)\chi_{223}(41,\cdot) χ223(49,)\chi_{223}(49,\cdot) χ223(56,)\chi_{223}(56,\cdot) χ223(60,)\chi_{223}(60,\cdot) χ223(64,)\chi_{223}(64,\cdot) χ223(66,)\chi_{223}(66,\cdot) χ223(68,)\chi_{223}(68,\cdot) χ223(82,)\chi_{223}(82,\cdot) χ223(98,)\chi_{223}(98,\cdot) χ223(105,)\chi_{223}(105,\cdot) χ223(112,)\chi_{223}(112,\cdot) χ223(115,)\chi_{223}(115,\cdot) χ223(119,)\chi_{223}(119,\cdot) χ223(120,)\chi_{223}(120,\cdot) χ223(128,)\chi_{223}(128,\cdot) χ223(132,)\chi_{223}(132,\cdot) χ223(136,)\chi_{223}(136,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ37)\Q(\zeta_{37})
Fixed field: Number field defined by a degree 37 polynomial

Values on generators

33e(2437)e\left(\frac{24}{37}\right)

First values

aa 1-111223344556677889910101111
χ223(17,a) \chi_{ 223 }(17, a) 1111e(2837)e\left(\frac{28}{37}\right)e(2437)e\left(\frac{24}{37}\right)e(1937)e\left(\frac{19}{37}\right)e(2737)e\left(\frac{27}{37}\right)e(1537)e\left(\frac{15}{37}\right)e(837)e\left(\frac{8}{37}\right)e(1037)e\left(\frac{10}{37}\right)e(1137)e\left(\frac{11}{37}\right)e(1837)e\left(\frac{18}{37}\right)e(1537)e\left(\frac{15}{37}\right)
sage: chi.jacobi_sum(n)
 
χ223(17,a)   \chi_{ 223 }(17,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ223(17,))   \tau_{ a }( \chi_{ 223 }(17,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ223(17,),χ223(n,))   J(\chi_{ 223 }(17,·),\chi_{ 223 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ223(17,))  K(a,b,\chi_{ 223 }(17,·)) \; at   a,b=\; a,b = e.g. 1,2