L(s) = 1 | + (0.683 + 0.730i)2-s + (0.995 + 0.0951i)3-s + (−0.0658 + 0.997i)4-s + (−0.993 − 0.114i)5-s + (0.610 + 0.791i)6-s + (−0.215 − 0.976i)7-s + (−0.773 + 0.633i)8-s + (0.981 + 0.189i)9-s + (−0.595 − 0.803i)10-s + (0.691 + 0.722i)11-s + (−0.160 + 0.987i)12-s + (0.806 − 0.591i)13-s + (0.565 − 0.824i)14-s + (−0.977 − 0.208i)15-s + (−0.991 − 0.131i)16-s + (−0.823 − 0.566i)17-s + ⋯ |
L(s) = 1 | + (0.683 + 0.730i)2-s + (0.995 + 0.0951i)3-s + (−0.0658 + 0.997i)4-s + (−0.993 − 0.114i)5-s + (0.610 + 0.791i)6-s + (−0.215 − 0.976i)7-s + (−0.773 + 0.633i)8-s + (0.981 + 0.189i)9-s + (−0.595 − 0.803i)10-s + (0.691 + 0.722i)11-s + (−0.160 + 0.987i)12-s + (0.806 − 0.591i)13-s + (0.565 − 0.824i)14-s + (−0.977 − 0.208i)15-s + (−0.991 − 0.131i)16-s + (−0.823 − 0.566i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2243 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0694i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2243 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0694i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.611083621 - 0.09072780883i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.611083621 - 0.09072780883i\) |
\(L(1)\) |
\(\approx\) |
\(1.673958891 + 0.4134045551i\) |
\(L(1)\) |
\(\approx\) |
\(1.673958891 + 0.4134045551i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2243 | \( 1 \) |
good | 2 | \( 1 + (0.683 + 0.730i)T \) |
| 3 | \( 1 + (0.995 + 0.0951i)T \) |
| 5 | \( 1 + (-0.993 - 0.114i)T \) |
| 7 | \( 1 + (-0.215 - 0.976i)T \) |
| 11 | \( 1 + (0.691 + 0.722i)T \) |
| 13 | \( 1 + (0.806 - 0.591i)T \) |
| 17 | \( 1 + (-0.823 - 0.566i)T \) |
| 19 | \( 1 + (0.583 - 0.811i)T \) |
| 23 | \( 1 + (-0.911 - 0.410i)T \) |
| 29 | \( 1 + (0.336 - 0.941i)T \) |
| 31 | \( 1 + (-0.264 - 0.964i)T \) |
| 37 | \( 1 + (0.146 - 0.989i)T \) |
| 41 | \( 1 + (-0.689 - 0.724i)T \) |
| 43 | \( 1 + (-0.939 - 0.343i)T \) |
| 47 | \( 1 + (-0.652 + 0.758i)T \) |
| 53 | \( 1 + (-0.0937 - 0.995i)T \) |
| 59 | \( 1 + (0.991 + 0.128i)T \) |
| 61 | \( 1 + (0.898 + 0.438i)T \) |
| 67 | \( 1 + (-0.998 - 0.0476i)T \) |
| 71 | \( 1 + (0.570 + 0.821i)T \) |
| 73 | \( 1 + (0.901 + 0.433i)T \) |
| 79 | \( 1 + (-0.116 - 0.993i)T \) |
| 83 | \( 1 + (0.861 + 0.507i)T \) |
| 89 | \( 1 + (0.711 + 0.702i)T \) |
| 97 | \( 1 + (-0.259 - 0.965i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.744577897441914464586565068427, −19.24990584764368409753075463317, −18.45562366693295853020908962161, −18.209777300071005631723676532100, −16.32386041157489887838541196643, −15.93947774299036270113266649292, −15.12390077288019317215762195312, −14.624667321031057139953566242400, −13.86643363694426911170963135815, −13.23080055943715127452983873497, −12.30866387032902123620206541583, −11.84311038013732350569643574096, −11.153563306985265199911878469371, −10.20893939461379755851799474225, −9.3105607516359200081297072335, −8.61413803747491707373370134246, −8.17609211943650757725944079129, −6.731190914549415606441540072139, −6.34911313150642250828386888026, −5.14629115246839466857283076769, −4.19076296086415886437946782943, −3.43850853489159200365897899763, −3.17677041632425983542907116884, −1.92312014988178325539378561789, −1.29183156222535391565715562843,
0.60987475788904650682345348531, 2.142428251261067803133302771323, 3.15148716826653458221267364262, 3.98099347036183713124186453540, 4.177860767883027594633931066104, 5.11747968520624911377191434352, 6.54756709658361172558018727763, 7.03082116760457969868565485428, 7.740017187542747454731220686993, 8.31963856476961790147221812299, 9.12662349387616360850598596858, 9.95533998058260466635444347643, 11.08939516872937290360357551969, 11.7919218214187559422017943900, 12.73221133671509275438139989436, 13.3647983843831677492149898127, 13.872095936207425427237132149979, 14.74079186243545810053461151306, 15.28734487454936616306187636362, 15.994202834164534642920252066268, 16.359143344839566128797714430327, 17.51677420247901969818890090159, 18.06896116887093137843647692349, 19.18757464360162763552686696031, 19.982583998110927847130663972773