L(s) = 1 | + (0.683 + 0.730i)2-s + (0.995 + 0.0951i)3-s + (−0.0658 + 0.997i)4-s + (−0.993 − 0.114i)5-s + (0.610 + 0.791i)6-s + (−0.215 − 0.976i)7-s + (−0.773 + 0.633i)8-s + (0.981 + 0.189i)9-s + (−0.595 − 0.803i)10-s + (0.691 + 0.722i)11-s + (−0.160 + 0.987i)12-s + (0.806 − 0.591i)13-s + (0.565 − 0.824i)14-s + (−0.977 − 0.208i)15-s + (−0.991 − 0.131i)16-s + (−0.823 − 0.566i)17-s + ⋯ |
L(s) = 1 | + (0.683 + 0.730i)2-s + (0.995 + 0.0951i)3-s + (−0.0658 + 0.997i)4-s + (−0.993 − 0.114i)5-s + (0.610 + 0.791i)6-s + (−0.215 − 0.976i)7-s + (−0.773 + 0.633i)8-s + (0.981 + 0.189i)9-s + (−0.595 − 0.803i)10-s + (0.691 + 0.722i)11-s + (−0.160 + 0.987i)12-s + (0.806 − 0.591i)13-s + (0.565 − 0.824i)14-s + (−0.977 − 0.208i)15-s + (−0.991 − 0.131i)16-s + (−0.823 − 0.566i)17-s + ⋯ |
Λ(s)=(=(2243s/2ΓR(s)L(s)(0.997−0.0694i)Λ(1−s)
Λ(s)=(=(2243s/2ΓR(s)L(s)(0.997−0.0694i)Λ(1−s)
Degree: |
1 |
Conductor: |
2243
|
Sign: |
0.997−0.0694i
|
Analytic conductor: |
10.4164 |
Root analytic conductor: |
10.4164 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2243(9,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 2243, (0: ), 0.997−0.0694i)
|
Particular Values
L(21) |
≈ |
2.611083621−0.09072780883i |
L(21) |
≈ |
2.611083621−0.09072780883i |
L(1) |
≈ |
1.673958891+0.4134045551i |
L(1) |
≈ |
1.673958891+0.4134045551i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2243 | 1 |
good | 2 | 1+(0.683+0.730i)T |
| 3 | 1+(0.995+0.0951i)T |
| 5 | 1+(−0.993−0.114i)T |
| 7 | 1+(−0.215−0.976i)T |
| 11 | 1+(0.691+0.722i)T |
| 13 | 1+(0.806−0.591i)T |
| 17 | 1+(−0.823−0.566i)T |
| 19 | 1+(0.583−0.811i)T |
| 23 | 1+(−0.911−0.410i)T |
| 29 | 1+(0.336−0.941i)T |
| 31 | 1+(−0.264−0.964i)T |
| 37 | 1+(0.146−0.989i)T |
| 41 | 1+(−0.689−0.724i)T |
| 43 | 1+(−0.939−0.343i)T |
| 47 | 1+(−0.652+0.758i)T |
| 53 | 1+(−0.0937−0.995i)T |
| 59 | 1+(0.991+0.128i)T |
| 61 | 1+(0.898+0.438i)T |
| 67 | 1+(−0.998−0.0476i)T |
| 71 | 1+(0.570+0.821i)T |
| 73 | 1+(0.901+0.433i)T |
| 79 | 1+(−0.116−0.993i)T |
| 83 | 1+(0.861+0.507i)T |
| 89 | 1+(0.711+0.702i)T |
| 97 | 1+(−0.259−0.965i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−19.744577897441914464586565068427, −19.24990584764368409753075463317, −18.45562366693295853020908962161, −18.209777300071005631723676532100, −16.32386041157489887838541196643, −15.93947774299036270113266649292, −15.12390077288019317215762195312, −14.624667321031057139953566242400, −13.86643363694426911170963135815, −13.23080055943715127452983873497, −12.30866387032902123620206541583, −11.84311038013732350569643574096, −11.153563306985265199911878469371, −10.20893939461379755851799474225, −9.3105607516359200081297072335, −8.61413803747491707373370134246, −8.17609211943650757725944079129, −6.731190914549415606441540072139, −6.34911313150642250828386888026, −5.14629115246839466857283076769, −4.19076296086415886437946782943, −3.43850853489159200365897899763, −3.17677041632425983542907116884, −1.92312014988178325539378561789, −1.29183156222535391565715562843,
0.60987475788904650682345348531, 2.142428251261067803133302771323, 3.15148716826653458221267364262, 3.98099347036183713124186453540, 4.177860767883027594633931066104, 5.11747968520624911377191434352, 6.54756709658361172558018727763, 7.03082116760457969868565485428, 7.740017187542747454731220686993, 8.31963856476961790147221812299, 9.12662349387616360850598596858, 9.95533998058260466635444347643, 11.08939516872937290360357551969, 11.7919218214187559422017943900, 12.73221133671509275438139989436, 13.3647983843831677492149898127, 13.872095936207425427237132149979, 14.74079186243545810053461151306, 15.28734487454936616306187636362, 15.994202834164534642920252066268, 16.359143344839566128797714430327, 17.51677420247901969818890090159, 18.06896116887093137843647692349, 19.18757464360162763552686696031, 19.982583998110927847130663972773