sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2243, base_ring=CyclotomicField(2242))
M = H._module
chi = DirichletCharacter(H, M([292]))
pari:[g,chi] = znchar(Mod(9,2243))
Modulus: | 2243 | |
Conductor: | 2243 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 1121 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ2243(3,⋅)
χ2243(4,⋅)
χ2243(7,⋅)
χ2243(9,⋅)
χ2243(10,⋅)
χ2243(11,⋅)
χ2243(12,⋅)
χ2243(16,⋅)
χ2243(17,⋅)
χ2243(21,⋅)
χ2243(25,⋅)
χ2243(26,⋅)
χ2243(27,⋅)
χ2243(28,⋅)
χ2243(30,⋅)
χ2243(31,⋅)
χ2243(33,⋅)
χ2243(36,⋅)
χ2243(38,⋅)
χ2243(40,⋅)
χ2243(43,⋅)
χ2243(44,⋅)
χ2243(46,⋅)
χ2243(48,⋅)
χ2243(49,⋅)
χ2243(51,⋅)
χ2243(53,⋅)
χ2243(58,⋅)
χ2243(61,⋅)
χ2243(64,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
2 → e(1121146)
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
χ2243(9,a) |
1 | 1 | e(1121146) | e(112117) | e(1121292) | e(1121581) | e(1121163) | e(1121802) | e(1121438) | e(112134) | e(1121727) | e(1121144) |
sage:chi.jacobi_sum(n)