Properties

Label 2243.9
Modulus $2243$
Conductor $2243$
Order $1121$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2243, base_ring=CyclotomicField(2242))
 
M = H._module
 
chi = DirichletCharacter(H, M([292]))
 
pari: [g,chi] = znchar(Mod(9,2243))
 

Basic properties

Modulus: \(2243\)
Conductor: \(2243\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(1121\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2243.g

\(\chi_{2243}(3,\cdot)\) \(\chi_{2243}(4,\cdot)\) \(\chi_{2243}(7,\cdot)\) \(\chi_{2243}(9,\cdot)\) \(\chi_{2243}(10,\cdot)\) \(\chi_{2243}(11,\cdot)\) \(\chi_{2243}(12,\cdot)\) \(\chi_{2243}(16,\cdot)\) \(\chi_{2243}(17,\cdot)\) \(\chi_{2243}(21,\cdot)\) \(\chi_{2243}(25,\cdot)\) \(\chi_{2243}(26,\cdot)\) \(\chi_{2243}(27,\cdot)\) \(\chi_{2243}(28,\cdot)\) \(\chi_{2243}(30,\cdot)\) \(\chi_{2243}(31,\cdot)\) \(\chi_{2243}(33,\cdot)\) \(\chi_{2243}(36,\cdot)\) \(\chi_{2243}(38,\cdot)\) \(\chi_{2243}(40,\cdot)\) \(\chi_{2243}(43,\cdot)\) \(\chi_{2243}(44,\cdot)\) \(\chi_{2243}(46,\cdot)\) \(\chi_{2243}(48,\cdot)\) \(\chi_{2243}(49,\cdot)\) \(\chi_{2243}(51,\cdot)\) \(\chi_{2243}(53,\cdot)\) \(\chi_{2243}(58,\cdot)\) \(\chi_{2243}(61,\cdot)\) \(\chi_{2243}(64,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{1121})$
Fixed field: Number field defined by a degree 1121 polynomial (not computed)

Values on generators

\(2\) → \(e\left(\frac{146}{1121}\right)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 2243 }(9, a) \) \(1\)\(1\)\(e\left(\frac{146}{1121}\right)\)\(e\left(\frac{17}{1121}\right)\)\(e\left(\frac{292}{1121}\right)\)\(e\left(\frac{581}{1121}\right)\)\(e\left(\frac{163}{1121}\right)\)\(e\left(\frac{802}{1121}\right)\)\(e\left(\frac{438}{1121}\right)\)\(e\left(\frac{34}{1121}\right)\)\(e\left(\frac{727}{1121}\right)\)\(e\left(\frac{144}{1121}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2243 }(9,a) \;\) at \(\;a = \) e.g. 2