from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2243, base_ring=CyclotomicField(2242))
M = H._module
chi = DirichletCharacter(H, M([66]))
pari: [g,chi] = znchar(Mod(17,2243))
χ2243(3,⋅)
χ2243(4,⋅)
χ2243(7,⋅)
χ2243(9,⋅)
χ2243(10,⋅)
χ2243(11,⋅)
χ2243(12,⋅)
χ2243(16,⋅)
χ2243(17,⋅)
χ2243(21,⋅)
χ2243(25,⋅)
χ2243(26,⋅)
χ2243(27,⋅)
χ2243(28,⋅)
χ2243(30,⋅)
χ2243(31,⋅)
χ2243(33,⋅)
χ2243(36,⋅)
χ2243(38,⋅)
χ2243(40,⋅)
χ2243(43,⋅)
χ2243(44,⋅)
χ2243(46,⋅)
χ2243(48,⋅)
χ2243(49,⋅)
χ2243(51,⋅)
χ2243(53,⋅)
χ2243(58,⋅)
χ2243(61,⋅)
χ2243(64,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
2 → e(112133)
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
χ2243(17,a) |
1 | 1 | e(112133) | e(1121334) | e(112166) | e(1121139) | e(1121367) | e(11211118) | e(112199) | e(1121668) | e(1121172) | e(1121785) |