Dirichlet series
L(s) = 1 | + (−0.915 + 0.401i)2-s + (0.546 + 0.837i)3-s + (0.677 − 0.735i)4-s + (0.986 + 0.164i)5-s + (−0.837 − 0.546i)6-s + (−0.614 + 0.789i)7-s + (−0.324 + 0.945i)8-s + (−0.401 + 0.915i)9-s + (−0.969 + 0.245i)10-s + (0.879 − 0.475i)11-s + (0.986 + 0.164i)12-s + (−0.164 + 0.986i)13-s + (0.245 − 0.969i)14-s + (0.401 + 0.915i)15-s + (−0.0825 − 0.996i)16-s + (−0.986 − 0.164i)17-s + ⋯ |
L(s) = 1 | + (−0.915 + 0.401i)2-s + (0.546 + 0.837i)3-s + (0.677 − 0.735i)4-s + (0.986 + 0.164i)5-s + (−0.837 − 0.546i)6-s + (−0.614 + 0.789i)7-s + (−0.324 + 0.945i)8-s + (−0.401 + 0.915i)9-s + (−0.969 + 0.245i)10-s + (0.879 − 0.475i)11-s + (0.986 + 0.164i)12-s + (−0.164 + 0.986i)13-s + (0.245 − 0.969i)14-s + (0.401 + 0.915i)15-s + (−0.0825 − 0.996i)16-s + (−0.986 − 0.164i)17-s + ⋯ |
Functional equation
Invariants
Degree: | \(1\) |
Conductor: | \(229\) |
Sign: | $-0.996 - 0.0861i$ |
Analytic conductor: | \(24.6094\) |
Root analytic conductor: | \(24.6094\) |
Motivic weight: | \(0\) |
Rational: | no |
Arithmetic: | yes |
Character: | $\chi_{229} (227, \cdot )$ |
Primitive: | yes |
Self-dual: | no |
Analytic rank: | \(0\) |
Selberg data: | \((1,\ 229,\ (1:\ ),\ -0.996 - 0.0861i)\) |
Particular Values
\(L(\frac{1}{2})\) | \(\approx\) | \(-0.04905557393 + 1.137062644i\) |
\(L(\frac12)\) | \(\approx\) | \(-0.04905557393 + 1.137062644i\) |
\(L(1)\) | \(\approx\) | \(0.6598720915 + 0.5597409888i\) |
\(L(1)\) | \(\approx\) | \(0.6598720915 + 0.5597409888i\) |
Euler product
$p$ | $F_p(T)$ | |
---|---|---|
bad | 229 | \( 1 \) |
good | 2 | \( 1 + (-0.915 + 0.401i)T \) |
3 | \( 1 + (0.546 + 0.837i)T \) | |
5 | \( 1 + (0.986 + 0.164i)T \) | |
7 | \( 1 + (-0.614 + 0.789i)T \) | |
11 | \( 1 + (0.879 - 0.475i)T \) | |
13 | \( 1 + (-0.164 + 0.986i)T \) | |
17 | \( 1 + (-0.986 - 0.164i)T \) | |
19 | \( 1 + (-0.986 + 0.164i)T \) | |
23 | \( 1 + (-0.969 - 0.245i)T \) | |
29 | \( 1 + (0.614 - 0.789i)T \) | |
31 | \( 1 + (0.475 + 0.879i)T \) | |
37 | \( 1 + (-0.0825 + 0.996i)T \) | |
41 | \( 1 + (0.915 - 0.401i)T \) | |
43 | \( 1 + (-0.0825 + 0.996i)T \) | |
47 | \( 1 + (-0.915 - 0.401i)T \) | |
53 | \( 1 + (0.546 + 0.837i)T \) | |
59 | \( 1 + (-0.996 + 0.0825i)T \) | |
61 | \( 1 + (-0.401 + 0.915i)T \) | |
67 | \( 1 + (-0.915 - 0.401i)T \) | |
71 | \( 1 + (0.879 + 0.475i)T \) | |
73 | \( 1 + (0.324 - 0.945i)T \) | |
79 | \( 1 + (0.614 + 0.789i)T \) | |
83 | \( 1 + (-0.0825 - 0.996i)T \) | |
89 | \( 1 - iT \) | |
97 | \( 1 + (-0.945 + 0.324i)T \) | |
show more | ||
show less |
Imaginary part of the first few zeros on the critical line
−25.76817953148810219532236146812, −25.0056935604634254377777543874, −24.24610850544467898727671621075, −22.79687567949567968531679480211, −21.75885358642811421483410386338, −20.533234113447210446025988095104, −19.91260057125772754215782121136, −19.30488926475791652388451079407, −17.86243143096065125636772621534, −17.60342321796952638635946164581, −16.622187531925435451367768431101, −15.19768789967504023222731713199, −13.937653058473785976160872421179, −12.97201757029250998116598634389, −12.39337248536618232454166020304, −10.8769933948890276996981306090, −9.85443827875458376775541353867, −9.09336674879372244384713247711, −8.03048205322681360573129170717, −6.854250760886880195305968017828, −6.237361368819210981298567913777, −3.96644341734941614589063583808, −2.628029655918101129394473275775, −1.65638416919573853723892636171, −0.43463270778145510773530029874, 1.86859123062587291525117954261, 2.780593222184314247845277602944, 4.541133364787728090645486661851, 6.03213778537063548279313948413, 6.5978117860025751380952118049, 8.42879362150924884974644393329, 9.09689635892592858037189982913, 9.74742544675966573008601723179, 10.709773053844803856503135713097, 11.88614561858664320719418415057, 13.64510578436267579440918530986, 14.42952775094207087304503840430, 15.35757553301193084614184579066, 16.32465412676701714453622596138, 17.01402213122328747257069024919, 18.133182938204450489996472493128, 19.217938905175056789773143927984, 19.77085313570928063411240725384, 21.14772374868589393059156077132, 21.70835725314238068604272215830, 22.70687520345663557753748193730, 24.44297202510128417354892290909, 24.974989894432369509273548046077, 25.90691130276667859916585549273, 26.38029051522484487444260982750