from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(229, base_ring=CyclotomicField(76))
M = H._module
chi = DirichletCharacter(H, M([45]))
pari: [g,chi] = znchar(Mod(227,229))
χ229(2,⋅)
χ229(8,⋅)
χ229(13,⋅)
χ229(21,⋅)
χ229(22,⋅)
χ229(30,⋅)
χ229(32,⋅)
χ229(34,⋅)
χ229(52,⋅)
χ229(54,⋅)
χ229(84,⋅)
χ229(86,⋅)
χ229(88,⋅)
χ229(93,⋅)
χ229(101,⋅)
χ229(106,⋅)
χ229(109,⋅)
χ229(114,⋅)
χ229(115,⋅)
χ229(120,⋅)
χ229(123,⋅)
χ229(128,⋅)
χ229(136,⋅)
χ229(141,⋅)
χ229(143,⋅)
χ229(145,⋅)
χ229(175,⋅)
χ229(177,⋅)
χ229(195,⋅)
χ229(197,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
6 → e(7645)
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
χ229(227,a) |
−1 | 1 | e(7633) | e(193) | e(3833) | e(381) | e(7645) | e(7627) | e(7623) | e(196) | e(7635) | e(3835) |
pari: znchargauss(g,chi,a)
sage: chi.kloosterman_sum(a,b)