Properties

Label 229.227
Modulus 229229
Conductor 229229
Order 7676
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(229, base_ring=CyclotomicField(76))
 
M = H._module
 
chi = DirichletCharacter(H, M([45]))
 
pari: [g,chi] = znchar(Mod(227,229))
 

Basic properties

Modulus: 229229
Conductor: 229229
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 7676
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 229.j

χ229(2,)\chi_{229}(2,\cdot) χ229(8,)\chi_{229}(8,\cdot) χ229(13,)\chi_{229}(13,\cdot) χ229(21,)\chi_{229}(21,\cdot) χ229(22,)\chi_{229}(22,\cdot) χ229(30,)\chi_{229}(30,\cdot) χ229(32,)\chi_{229}(32,\cdot) χ229(34,)\chi_{229}(34,\cdot) χ229(52,)\chi_{229}(52,\cdot) χ229(54,)\chi_{229}(54,\cdot) χ229(84,)\chi_{229}(84,\cdot) χ229(86,)\chi_{229}(86,\cdot) χ229(88,)\chi_{229}(88,\cdot) χ229(93,)\chi_{229}(93,\cdot) χ229(101,)\chi_{229}(101,\cdot) χ229(106,)\chi_{229}(106,\cdot) χ229(109,)\chi_{229}(109,\cdot) χ229(114,)\chi_{229}(114,\cdot) χ229(115,)\chi_{229}(115,\cdot) χ229(120,)\chi_{229}(120,\cdot) χ229(123,)\chi_{229}(123,\cdot) χ229(128,)\chi_{229}(128,\cdot) χ229(136,)\chi_{229}(136,\cdot) χ229(141,)\chi_{229}(141,\cdot) χ229(143,)\chi_{229}(143,\cdot) χ229(145,)\chi_{229}(145,\cdot) χ229(175,)\chi_{229}(175,\cdot) χ229(177,)\chi_{229}(177,\cdot) χ229(195,)\chi_{229}(195,\cdot) χ229(197,)\chi_{229}(197,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ76)\Q(\zeta_{76})
Fixed field: Number field defined by a degree 76 polynomial

Values on generators

66e(4576)e\left(\frac{45}{76}\right)

First values

aa 1-111223344556677889910101111
χ229(227,a) \chi_{ 229 }(227, a) 1-111e(3376)e\left(\frac{33}{76}\right)e(319)e\left(\frac{3}{19}\right)e(3338)e\left(\frac{33}{38}\right)e(138)e\left(\frac{1}{38}\right)e(4576)e\left(\frac{45}{76}\right)e(2776)e\left(\frac{27}{76}\right)e(2376)e\left(\frac{23}{76}\right)e(619)e\left(\frac{6}{19}\right)e(3576)e\left(\frac{35}{76}\right)e(3538)e\left(\frac{35}{38}\right)
sage: chi.jacobi_sum(n)
 
χ229(227,a)   \chi_{ 229 }(227,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ229(227,))   \tau_{ a }( \chi_{ 229 }(227,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ229(227,),χ229(n,))   J(\chi_{ 229 }(227,·),\chi_{ 229 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ229(227,))  K(a,b,\chi_{ 229 }(227,·)) \; at   a,b=\; a,b = e.g. 1,2