L(s) = 1 | + (0.999 + 0.00491i)2-s + (0.648 − 0.761i)3-s + (0.999 + 0.00983i)4-s + (0.614 − 0.789i)5-s + (0.652 − 0.758i)6-s + (−0.817 − 0.576i)7-s + (0.999 + 0.0147i)8-s + (−0.159 − 0.987i)9-s + (0.617 − 0.786i)10-s + (0.134 − 0.990i)11-s + (0.655 − 0.754i)12-s + (−0.985 − 0.171i)13-s + (−0.814 − 0.580i)14-s + (−0.202 − 0.979i)15-s + (0.999 + 0.0196i)16-s + (0.988 + 0.151i)17-s + ⋯ |
L(s) = 1 | + (0.999 + 0.00491i)2-s + (0.648 − 0.761i)3-s + (0.999 + 0.00983i)4-s + (0.614 − 0.789i)5-s + (0.652 − 0.758i)6-s + (−0.817 − 0.576i)7-s + (0.999 + 0.0147i)8-s + (−0.159 − 0.987i)9-s + (0.617 − 0.786i)10-s + (0.134 − 0.990i)11-s + (0.655 − 0.754i)12-s + (−0.985 − 0.171i)13-s + (−0.814 − 0.580i)14-s + (−0.202 − 0.979i)15-s + (0.999 + 0.0196i)16-s + (0.988 + 0.151i)17-s + ⋯ |
Λ(s)=(=(2557s/2ΓR(s)L(s)(−0.690−0.723i)Λ(1−s)
Λ(s)=(=(2557s/2ΓR(s)L(s)(−0.690−0.723i)Λ(1−s)
Degree: |
1 |
Conductor: |
2557
|
Sign: |
−0.690−0.723i
|
Analytic conductor: |
11.8746 |
Root analytic conductor: |
11.8746 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2557(4,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 2557, (0: ), −0.690−0.723i)
|
Particular Values
L(21) |
≈ |
1.668264810−3.896881111i |
L(21) |
≈ |
1.668264810−3.896881111i |
L(1) |
≈ |
2.004164902−1.392826673i |
L(1) |
≈ |
2.004164902−1.392826673i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2557 | 1 |
good | 2 | 1+(0.999+0.00491i)T |
| 3 | 1+(0.648−0.761i)T |
| 5 | 1+(0.614−0.789i)T |
| 7 | 1+(−0.817−0.576i)T |
| 11 | 1+(0.134−0.990i)T |
| 13 | 1+(−0.985−0.171i)T |
| 17 | 1+(0.988+0.151i)T |
| 19 | 1+(−0.929−0.369i)T |
| 23 | 1+(0.967−0.252i)T |
| 29 | 1+(0.872+0.489i)T |
| 31 | 1+(−0.997−0.0687i)T |
| 37 | 1+(0.425+0.904i)T |
| 41 | 1+(0.274+0.961i)T |
| 43 | 1+(0.0614+0.998i)T |
| 47 | 1+(0.985−0.171i)T |
| 53 | 1+(−0.525−0.850i)T |
| 59 | 1+(−0.743−0.668i)T |
| 61 | 1+(−0.787+0.616i)T |
| 67 | 1+(0.245+0.969i)T |
| 71 | 1+(−0.149+0.988i)T |
| 73 | 1+(−0.955−0.295i)T |
| 79 | 1+(0.883+0.467i)T |
| 83 | 1+(−0.998+0.0491i)T |
| 89 | 1+(0.207−0.978i)T |
| 97 | 1+(0.890−0.454i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−19.67239252023361582349264703524, −19.2488243596833274607405707377, −18.51268786382191993332060186314, −17.12960400129567420976092041449, −16.8338778370091069897361502976, −15.70678061241716574551243863061, −15.2591865677899005713211552410, −14.60533010407539572210898936986, −14.21763487534989042231401365092, −13.35638500902341342612022373195, −12.5162043096290098090112337118, −12.064933131414859760024022125188, −10.77871649379823059733516668489, −10.38132904216408443804879128247, −9.58611126037841920107630414710, −9.0684676326784875717749720340, −7.594386823175012904747993206149, −7.19629885717870946301821732879, −6.19584350296141030901238224715, −5.50587041045922351759549979420, −4.731724125304093949687138158203, −3.83839137592894868791043028570, −3.088507111505972388808206904332, −2.42340012278757643420062416882, −1.89154013408296667953865415499,
0.79149579181814517395364459192, 1.52690364603584035618325531047, 2.73205036402955651432583527744, 3.07477180833036111540537423887, 4.11782831089924712481882237106, 4.97162151152862919838547726137, 5.931615409208131142406732385452, 6.45025061279793367793526569062, 7.23144218866154252699715865678, 8.03359812836392116925257793793, 8.85763343825434379481793204834, 9.722012509311931843926164924069, 10.45507178762804994044777863831, 11.49332702234859299158514458976, 12.38698049849266091492096450599, 12.96705921401333495949049764852, 13.16328990116521928095937608719, 14.17840667017442629051034531067, 14.458093593206895717672421279511, 15.41131579097921835493652685213, 16.46284164734002789066604717642, 16.78878973852052001785924863466, 17.50944672731212095102155497562, 18.769126548860940978121882486711, 19.36445207264607870798680219530