Properties

Label 2557.4
Modulus $2557$
Conductor $2557$
Order $1278$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2557, base_ring=CyclotomicField(1278))
 
M = H._module
 
chi = DirichletCharacter(H, M([1]))
 
pari: [g,chi] = znchar(Mod(4,2557))
 

Basic properties

Modulus: \(2557\)
Conductor: \(2557\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(1278\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2557.q

\(\chi_{2557}(4,\cdot)\) \(\chi_{2557}(7,\cdot)\) \(\chi_{2557}(23,\cdot)\) \(\chi_{2557}(25,\cdot)\) \(\chi_{2557}(29,\cdot)\) \(\chi_{2557}(34,\cdot)\) \(\chi_{2557}(36,\cdot)\) \(\chi_{2557}(37,\cdot)\) \(\chi_{2557}(40,\cdot)\) \(\chi_{2557}(44,\cdot)\) \(\chi_{2557}(52,\cdot)\) \(\chi_{2557}(59,\cdot)\) \(\chi_{2557}(63,\cdot)\) \(\chi_{2557}(70,\cdot)\) \(\chi_{2557}(73,\cdot)\) \(\chi_{2557}(76,\cdot)\) \(\chi_{2557}(77,\cdot)\) \(\chi_{2557}(86,\cdot)\) \(\chi_{2557}(91,\cdot)\) \(\chi_{2557}(94,\cdot)\) \(\chi_{2557}(108,\cdot)\) \(\chi_{2557}(120,\cdot)\) \(\chi_{2557}(127,\cdot)\) \(\chi_{2557}(132,\cdot)\) \(\chi_{2557}(133,\cdot)\) \(\chi_{2557}(156,\cdot)\) \(\chi_{2557}(159,\cdot)\) \(\chi_{2557}(173,\cdot)\) \(\chi_{2557}(186,\cdot)\) \(\chi_{2557}(189,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{639})$
Fixed field: Number field defined by a degree 1278 polynomial (not computed)

Values on generators

\(2\) → \(e\left(\frac{1}{1278}\right)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 2557 }(4, a) \) \(1\)\(1\)\(e\left(\frac{1}{1278}\right)\)\(e\left(\frac{551}{639}\right)\)\(e\left(\frac{1}{639}\right)\)\(e\left(\frac{1093}{1278}\right)\)\(e\left(\frac{1103}{1278}\right)\)\(e\left(\frac{382}{639}\right)\)\(e\left(\frac{1}{426}\right)\)\(e\left(\frac{463}{639}\right)\)\(e\left(\frac{547}{639}\right)\)\(e\left(\frac{493}{639}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2557 }(4,a) \;\) at \(\;a = \) e.g. 2