Properties

Label 2557.4
Modulus 25572557
Conductor 25572557
Order 12781278
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2557, base_ring=CyclotomicField(1278))
 
M = H._module
 
chi = DirichletCharacter(H, M([1]))
 
pari: [g,chi] = znchar(Mod(4,2557))
 

Basic properties

Modulus: 25572557
Conductor: 25572557
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 12781278
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2557.q

χ2557(4,)\chi_{2557}(4,\cdot) χ2557(7,)\chi_{2557}(7,\cdot) χ2557(23,)\chi_{2557}(23,\cdot) χ2557(25,)\chi_{2557}(25,\cdot) χ2557(29,)\chi_{2557}(29,\cdot) χ2557(34,)\chi_{2557}(34,\cdot) χ2557(36,)\chi_{2557}(36,\cdot) χ2557(37,)\chi_{2557}(37,\cdot) χ2557(40,)\chi_{2557}(40,\cdot) χ2557(44,)\chi_{2557}(44,\cdot) χ2557(52,)\chi_{2557}(52,\cdot) χ2557(59,)\chi_{2557}(59,\cdot) χ2557(63,)\chi_{2557}(63,\cdot) χ2557(70,)\chi_{2557}(70,\cdot) χ2557(73,)\chi_{2557}(73,\cdot) χ2557(76,)\chi_{2557}(76,\cdot) χ2557(77,)\chi_{2557}(77,\cdot) χ2557(86,)\chi_{2557}(86,\cdot) χ2557(91,)\chi_{2557}(91,\cdot) χ2557(94,)\chi_{2557}(94,\cdot) χ2557(108,)\chi_{2557}(108,\cdot) χ2557(120,)\chi_{2557}(120,\cdot) χ2557(127,)\chi_{2557}(127,\cdot) χ2557(132,)\chi_{2557}(132,\cdot) χ2557(133,)\chi_{2557}(133,\cdot) χ2557(156,)\chi_{2557}(156,\cdot) χ2557(159,)\chi_{2557}(159,\cdot) χ2557(173,)\chi_{2557}(173,\cdot) χ2557(186,)\chi_{2557}(186,\cdot) χ2557(189,)\chi_{2557}(189,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ639)\Q(\zeta_{639})
Fixed field: Number field defined by a degree 1278 polynomial (not computed)

Values on generators

22e(11278)e\left(\frac{1}{1278}\right)

First values

aa 1-111223344556677889910101111
χ2557(4,a) \chi_{ 2557 }(4, a) 1111e(11278)e\left(\frac{1}{1278}\right)e(551639)e\left(\frac{551}{639}\right)e(1639)e\left(\frac{1}{639}\right)e(10931278)e\left(\frac{1093}{1278}\right)e(11031278)e\left(\frac{1103}{1278}\right)e(382639)e\left(\frac{382}{639}\right)e(1426)e\left(\frac{1}{426}\right)e(463639)e\left(\frac{463}{639}\right)e(547639)e\left(\frac{547}{639}\right)e(493639)e\left(\frac{493}{639}\right)
sage: chi.jacobi_sum(n)
 
χ2557(4,a)   \chi_{ 2557 }(4,a) \; at   a=\;a = e.g. 2