from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2557, base_ring=CyclotomicField(1278))
M = H._module
chi = DirichletCharacter(H, M([115]))
pari: [g,chi] = znchar(Mod(37,2557))
χ2557(4,⋅)
χ2557(7,⋅)
χ2557(23,⋅)
χ2557(25,⋅)
χ2557(29,⋅)
χ2557(34,⋅)
χ2557(36,⋅)
χ2557(37,⋅)
χ2557(40,⋅)
χ2557(44,⋅)
χ2557(52,⋅)
χ2557(59,⋅)
χ2557(63,⋅)
χ2557(70,⋅)
χ2557(73,⋅)
χ2557(76,⋅)
χ2557(77,⋅)
χ2557(86,⋅)
χ2557(91,⋅)
χ2557(94,⋅)
χ2557(108,⋅)
χ2557(120,⋅)
χ2557(127,⋅)
χ2557(132,⋅)
χ2557(133,⋅)
χ2557(156,⋅)
χ2557(159,⋅)
χ2557(173,⋅)
χ2557(186,⋅)
χ2557(189,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
2 → e(1278115)
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
χ2557(37,a) |
1 | 1 | e(1278115) | e(639104) | e(639115) | e(1278451) | e(1278323) | e(639478) | e(426115) | e(639208) | e(639283) | e(639463) |