from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2557, base_ring=CyclotomicField(1278))
M = H._module
chi = DirichletCharacter(H, M([613]))
pari: [g,chi] = znchar(Mod(23,2557))
χ2557(4,⋅)
χ2557(7,⋅)
χ2557(23,⋅)
χ2557(25,⋅)
χ2557(29,⋅)
χ2557(34,⋅)
χ2557(36,⋅)
χ2557(37,⋅)
χ2557(40,⋅)
χ2557(44,⋅)
χ2557(52,⋅)
χ2557(59,⋅)
χ2557(63,⋅)
χ2557(70,⋅)
χ2557(73,⋅)
χ2557(76,⋅)
χ2557(77,⋅)
χ2557(86,⋅)
χ2557(91,⋅)
χ2557(94,⋅)
χ2557(108,⋅)
χ2557(120,⋅)
χ2557(127,⋅)
χ2557(132,⋅)
χ2557(133,⋅)
χ2557(156,⋅)
χ2557(159,⋅)
χ2557(173,⋅)
χ2557(186,⋅)
χ2557(189,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
2 → e(1278613)
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
χ2557(23,a) |
1 | 1 | e(1278613) | e(639371) | e(639613) | e(1278337) | e(127877) | e(639292) | e(426187) | e(639103) | e(639475) | e(639601) |