L(s) = 1 | + (0.866 + 0.5i)3-s + (−0.5 − 0.866i)7-s + (0.5 + 0.866i)9-s + (−0.866 − 0.5i)11-s + (0.866 − 0.5i)17-s + (0.866 − 0.5i)19-s − i·21-s + (−0.866 − 0.5i)23-s − i·27-s + (0.5 − 0.866i)29-s − i·31-s + (−0.5 − 0.866i)33-s + (0.5 − 0.866i)37-s + (−0.866 − 0.5i)41-s + (0.866 − 0.5i)43-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)3-s + (−0.5 − 0.866i)7-s + (0.5 + 0.866i)9-s + (−0.866 − 0.5i)11-s + (0.866 − 0.5i)17-s + (0.866 − 0.5i)19-s − i·21-s + (−0.866 − 0.5i)23-s − i·27-s + (0.5 − 0.866i)29-s − i·31-s + (−0.5 − 0.866i)33-s + (0.5 − 0.866i)37-s + (−0.866 − 0.5i)41-s + (0.866 − 0.5i)43-s + ⋯ |
Λ(s)=(=(260s/2ΓR(s+1)L(s)(0.507−0.861i)Λ(1−s)
Λ(s)=(=(260s/2ΓR(s+1)L(s)(0.507−0.861i)Λ(1−s)
Degree: |
1 |
Conductor: |
260
= 22⋅5⋅13
|
Sign: |
0.507−0.861i
|
Analytic conductor: |
27.9408 |
Root analytic conductor: |
27.9408 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ260(63,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 260, (1: ), 0.507−0.861i)
|
Particular Values
L(21) |
≈ |
1.822758708−1.041899411i |
L(21) |
≈ |
1.822758708−1.041899411i |
L(1) |
≈ |
1.312810804−0.1312926369i |
L(1) |
≈ |
1.312810804−0.1312926369i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 13 | 1 |
good | 3 | 1+(0.866+0.5i)T |
| 7 | 1+(−0.5−0.866i)T |
| 11 | 1+(−0.866−0.5i)T |
| 17 | 1+(0.866−0.5i)T |
| 19 | 1+(0.866−0.5i)T |
| 23 | 1+(−0.866−0.5i)T |
| 29 | 1+(0.5−0.866i)T |
| 31 | 1−iT |
| 37 | 1+(0.5−0.866i)T |
| 41 | 1+(−0.866−0.5i)T |
| 43 | 1+(0.866−0.5i)T |
| 47 | 1+T |
| 53 | 1+iT |
| 59 | 1+(−0.866+0.5i)T |
| 61 | 1+(−0.5−0.866i)T |
| 67 | 1+(0.5−0.866i)T |
| 71 | 1+(−0.866+0.5i)T |
| 73 | 1+T |
| 79 | 1+T |
| 83 | 1+T |
| 89 | 1+(−0.866−0.5i)T |
| 97 | 1+(−0.5−0.866i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−25.583928323700287961963532751816, −25.206168569763524261480117580739, −24.02266122005873726904885112613, −23.290965747288920591652626400624, −22.04017089853320294222504821668, −21.14421100312114675589791487467, −20.23167592092980421483689462168, −19.34774583802021232037598951193, −18.457631948575509011702718271188, −17.88506912559648435351076964497, −16.27540252963815161535014430299, −15.464248701606341753341851827003, −14.56793760519405529815636741828, −13.58473234802728342005203243606, −12.553846007747722091441037467961, −12.013548941639456545658188983372, −10.25274582633549496868766473834, −9.47159333224783574392736922190, −8.34278082406918272749321932905, −7.56515215377453961376923581436, −6.341908378475445631591330873497, −5.20230907074784218563422733588, −3.53886124626226544077745287818, −2.65682201853045912544269988971, −1.42268606674504629986636616148,
0.60087705055952565328322565218, 2.46719053514251435929966550265, 3.44140664429480418492133401363, 4.483167533990135843535419873102, 5.77821712462214185087862184479, 7.35156922749827283992258296057, 7.99407289381297991648867681743, 9.31318671453022153201598954318, 10.09773417040597860770460700691, 10.94723610940759706655452771435, 12.42370290163529432160450438350, 13.72479566428842979748464616618, 13.90547121117239172820511183602, 15.36634406328652819781028537285, 16.08334618624184817863400168235, 16.901814151686133411270926231353, 18.3456502801372696445070517136, 19.16698664354184127718295338909, 20.18806815173830763044901536728, 20.72746334619556489974935915217, 21.75524911904627252097887331839, 22.7074999645223900067723451944, 23.74692921812292220147180102911, 24.68783112653183236055526368392, 25.75854807289780962058229277133