Properties

Label 1-260-260.63-r1-0-0
Degree 11
Conductor 260260
Sign 0.5070.861i0.507 - 0.861i
Analytic cond. 27.940827.9408
Root an. cond. 27.940827.9408
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.866 + 0.5i)3-s + (−0.5 − 0.866i)7-s + (0.5 + 0.866i)9-s + (−0.866 − 0.5i)11-s + (0.866 − 0.5i)17-s + (0.866 − 0.5i)19-s i·21-s + (−0.866 − 0.5i)23-s i·27-s + (0.5 − 0.866i)29-s i·31-s + (−0.5 − 0.866i)33-s + (0.5 − 0.866i)37-s + (−0.866 − 0.5i)41-s + (0.866 − 0.5i)43-s + ⋯
L(s)  = 1  + (0.866 + 0.5i)3-s + (−0.5 − 0.866i)7-s + (0.5 + 0.866i)9-s + (−0.866 − 0.5i)11-s + (0.866 − 0.5i)17-s + (0.866 − 0.5i)19-s i·21-s + (−0.866 − 0.5i)23-s i·27-s + (0.5 − 0.866i)29-s i·31-s + (−0.5 − 0.866i)33-s + (0.5 − 0.866i)37-s + (−0.866 − 0.5i)41-s + (0.866 − 0.5i)43-s + ⋯

Functional equation

Λ(s)=(260s/2ΓR(s+1)L(s)=((0.5070.861i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 260 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.507 - 0.861i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(260s/2ΓR(s+1)L(s)=((0.5070.861i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 260 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.507 - 0.861i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 260260    =    225132^{2} \cdot 5 \cdot 13
Sign: 0.5070.861i0.507 - 0.861i
Analytic conductor: 27.940827.9408
Root analytic conductor: 27.940827.9408
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ260(63,)\chi_{260} (63, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 260, (1: ), 0.5070.861i)(1,\ 260,\ (1:\ ),\ 0.507 - 0.861i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.8227587081.041899411i1.822758708 - 1.041899411i
L(12)L(\frac12) \approx 1.8227587081.041899411i1.822758708 - 1.041899411i
L(1)L(1) \approx 1.3128108040.1312926369i1.312810804 - 0.1312926369i
L(1)L(1) \approx 1.3128108040.1312926369i1.312810804 - 0.1312926369i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
13 1 1
good3 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
7 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
11 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
17 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
19 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
23 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
29 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
31 1iT 1 - iT
37 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
41 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
43 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
47 1+T 1 + T
53 1+iT 1 + iT
59 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
61 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
67 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
71 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
73 1+T 1 + T
79 1+T 1 + T
83 1+T 1 + T
89 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
97 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−25.583928323700287961963532751816, −25.206168569763524261480117580739, −24.02266122005873726904885112613, −23.290965747288920591652626400624, −22.04017089853320294222504821668, −21.14421100312114675589791487467, −20.23167592092980421483689462168, −19.34774583802021232037598951193, −18.457631948575509011702718271188, −17.88506912559648435351076964497, −16.27540252963815161535014430299, −15.464248701606341753341851827003, −14.56793760519405529815636741828, −13.58473234802728342005203243606, −12.553846007747722091441037467961, −12.013548941639456545658188983372, −10.25274582633549496868766473834, −9.47159333224783574392736922190, −8.34278082406918272749321932905, −7.56515215377453961376923581436, −6.341908378475445631591330873497, −5.20230907074784218563422733588, −3.53886124626226544077745287818, −2.65682201853045912544269988971, −1.42268606674504629986636616148, 0.60087705055952565328322565218, 2.46719053514251435929966550265, 3.44140664429480418492133401363, 4.483167533990135843535419873102, 5.77821712462214185087862184479, 7.35156922749827283992258296057, 7.99407289381297991648867681743, 9.31318671453022153201598954318, 10.09773417040597860770460700691, 10.94723610940759706655452771435, 12.42370290163529432160450438350, 13.72479566428842979748464616618, 13.90547121117239172820511183602, 15.36634406328652819781028537285, 16.08334618624184817863400168235, 16.901814151686133411270926231353, 18.3456502801372696445070517136, 19.16698664354184127718295338909, 20.18806815173830763044901536728, 20.72746334619556489974935915217, 21.75524911904627252097887331839, 22.7074999645223900067723451944, 23.74692921812292220147180102911, 24.68783112653183236055526368392, 25.75854807289780962058229277133

Graph of the ZZ-function along the critical line